Triangles: Erdös, Tutte, and Butterflies

Andrey Kupavskii,
MIPT, Moscow

Squaring the Square
Problem (Erdös 1934)
Is it possible to tile a square with finitely many smaller squares, no two of which are congruent?

Problem (Erdös 1934)
Is it possible to tile a square with finitely many smaller squares, no two of which are congruent?

Theorem (Brook, Smith: Stone, Twat 1940; Sprague) Yes! Smallest such tiling consists of 21 squares.

THE DISSECTION OF RECTANGLES INTO SQUARES

By R. L. Brooks, C. A. B. Smith, A. H. Stone and W. T. Tutte

Problem (Erdös 1934)
Is it possible to tile a square with finitely many smaller squares, no two of which are congruent?

Theorem (Brook, Smith: Stone, Twat 1940 ; Sprague) Yes! Smallest such tiling consists of 21 squares.

Squaring the Square

The Butterfly Effect

Edward Lorenz (1917-2008)

"like many of Erdős's other casual conjectures, it would change the lives of those who worked on it. One of them, Cedric Smith, would later remark with some-only slightly strained-justification that, much as the flapping of a butterfly's wing in Montana might have caused a monsoon in India, Erdős's little conjecture might have altered the fate of Western civilization." (Bruce Schechter, 1998)

Squaring the Square

Problem (Erdös 1934)
Is it possible to tile a square with finitely many smaller squares, no two of which are congruent?

Theorem (Brook, Smith: Stone, Twat 1940 ; Sprague) Yes! Smallest such tiling consists of 21 squares.

Corollary. The plane can be tiled by infinitely many pairwise noncongruent squares whose side lengths are bounded from below by a constant $c>0$.

TILING WITH Equilateral Triangles
Theorem (Tutte 1948)
An equilateral triangle cannot be tiled with finitely many pairwise noncongruent equilateral triangles.

Problem (Nandakumar 2016)
Is it possible to tile the plane with pairwise noncom. gruent equilateral triangles (whose side lengths are bounded from below by a constant $c>0$)?

Theorem (Richter 2012)
There exists a tiling of the plane with pairwise noncongruent equilateral triangles.

Theorem (P., Tardos 2018: Richter, Worth)
There is no tiling of the plane with pairwise noncongruent equilateral triangles whose side lengths are bounded from below by a constant $c>0$.

Theorem. Let τ be a tiling of the plane with equilateral triangles of side lengths $\geqslant c>0$ such that no twotriang!es share a side.

Then the triangles in T have at most three different side lengths, a, b, c with $a=b+c$, and the tiling is periodic.

Theorem. Let \mathcal{T} be a tiling of the plane with equilateral triangles of side lengths $\geqslant c>0$ such that no two triangles share a side.

Then the triangles in T have at most three different side lengths, a, b, c with $a=b+c$, and the tiling is periodic.

HARMONIC FUNCTIONS / RECURRENT WALKS

$$
s(T)<s\left(T^{\prime}\right)
$$

Directed graph on large triangles, out-degree $=3$
side length of \forall large $=$ $\frac{1}{3} \sum$ side lengths of out - neighbors

Random walk on large triangles: go to an out-neighbor with probability $\frac{1}{3}$

Recurrent walk

$$
T=T_{0}, T_{1}, T_{2}, \ldots, T_{N}=T^{1}
$$

$s\left(T_{i}\right), i=0,1,2, \ldots$ martingale

R. NANDAKUMAR'S PROBLEMS

computer programmer, college teacher, Kochi (India)

R. NANDAKUMAR'S PROBLEMS

- Conjecture. For every $n \geqslant 2$, any convex body in the plane can be partitioned into n convex pieces of equa! area and equa! perimeter.

$$
n=p^{k}
$$

Karasev, Hubard, Aronov 2014
Blagojevíćz Zoiegler 2014
Any n :
Akopyan, Avvakumov, Karasev 2018

R. NANDAKUMAR'S PROBLEMS

- Conjecture. For every $n \geqslant 2$, any convex body in the plane can be partitioned into n convex pieces of equal! area and equal! perimeter.
- Problem. Is it possible to tile the plane with pairwise noncongruent triangles of equal area and equal perimeter?
R. NANDAKUMAR'S PROBLEMS
- Conjecture. For every $n \geqslant 2$, any convex body in the plane can be partitioned into n convex pieces of equal! area and equal! perimeter.
- Problem. Is it possible to tile the plane with pairwise noncongruent triangles of equal area and equal perimeter?
- Problem. Is it possible to tile the plane with pairwise noncongruent triangles of equal area and bounded perimeter?

A Negative Answer
Problem. Is it possible to tile the plane with pairwise noncongruent triangles of equal area and equal perimeter?

In such a tiling, no two triangles share a side.

A Negative Answer

Problem. Is it possible to tile the plane with pairwise noncongruent triangles of equal area and equal perimeter?

In such a tiling, no two triangles share a side.
First attempt: Can one perturb the regular tiling to avoid that two triangles share a side?

A Negative Answer
Problem. Is it possible to tile the plane with pairwise noncongruent triangles of equal area and equal perimeter?

In such a tiling, no two triangles share a side.
First attempt: Can one perturb the regular tiling to avoid that two triangles share a side?

NO!

A Negative Answer

NO!

Theorem. Let τ be a locally finite tiling of the plane with triangles, all sides of which belong to $[1,2)$.

Then there are two triangles in τ that share a side.

A Negative Answer

NO!

Theorem. Let τ be a locally finite tiling of the plane with triangles, all sides of which belong to $[1,2)$.

Then there are two triangles in τ that share a side.
Theorem. In any locally finite tiling of the plane with triangles, there is a triangle that has a side which is the union of one or more sides of other triangles.

A Negative Answer

Problem. Is it possible to tile the plane with pairwise noncongruent triangles of equal area and equal perimeter?

Theorem (Kupavskii, P., Tardos 2018)
There is no tiling of the plane with pairwise noncongruent triangles of equal area and equal perimeter..

A Negative Answer

Theorem (Kupavskii, P., Tardos 2018)
There is no tiling of the plane with pairwise noncongruent triangles of equal area and equal perimeter.

In such a tiling, no two triangles share a side.

Theorem. Let τ be a tiling of the plane with triangles of equal perimeter, each of which has area $\geqslant \varepsilon>0$.

Then there are two triangles in \mathcal{J} that share a side.

Theorem. (Kupavskii, P., Tardos 2018)
For $k \geqslant 4$, there exists no tiling of a convex k-gan with finitely many triangles, no two of which share a side.

$k=3$

infinite

Proof: stretch $=$ minimal segment decomposable into sides in 2 different ways

By Euler's Polyhedral Formula,

$$
v_{b d}+2 v_{i n t}-v_{i n t}^{*}=t+2
$$

subdividing faces (triangles)
Since every stretch contains $\geqslant 3$ sides.

$$
v_{i n t}^{*} \geqslant \frac{3 t-v_{b d}}{3}
$$

Combining.

$$
v_{b d}+3\left(v_{\text {int }}-v_{\text {int }}^{*}\right) \leq 3 \Rightarrow \begin{aligned}
& k=3 \\
& v_{\text {int }}=v_{\text {int }}^{*}
\end{aligned}
$$

A Positive Answer
Theorem (Kupavskii, P., Tardos 2018; Frettlöh 2018)
There exist tilings of the plane with noncongruent

1. unit perimeter triangles, each of which has area $\geqslant \varepsilon>0$;
2. unit area triangles, each of which has perimeter $\leqslant C$.

