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[Richard E. Bellman‘63] Suppose that we know that a particle

is located in the interval (x, x+dx), somewhere along the real

line −∞ < x <∞ with a probability density function g(x). We

start at some initial point x0 and can move in either direction.

What policy minimizes the expected time required to find the

particle,

[Anatole Beck‘64]: A man in an automobile searches for

another man who is located at some point of a certain road.

He starts at a given point and knows in advance the probability

that the second man is at any given point of the road. Since the

man being sought might be in either direction . . .
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Anatole Beck wrote quite a few papers on the topic:

On the linear search problem (1964)

More on the linear search problem (1965)

Yet more on the linear search problem (1970)

The return of the linear search problem (1973)

Son of the linear search problem (1984)

The linear search problem rides again (1986)

The revenge of the linear search problem (1992)
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Computer Science rediscovers the problem

Cow Path Problem – Cow at a Fence Problem

[Baeza-Yates,Culberson,Rawlins‘88]: A cow comes to an in-

finitely long straight fence. The cow knows that there is a

gate in the fence, and she wants to get to the other side. Un-

fortunately, she doesn’t know where the gate is located . . .

We start at 0 (origin), move at constant speed 1, and want to

find the target at x, |x| ≥ 1, in time at most λ|x|, λ as small as

possible. (λ-competitive)

[Beck,Newman‘70] λ = 9 is tight.

rand.4.591−comp.[Kao,Reif,Tate‘94]
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Note: Without “|x| ≥ 1” no competitive ratio is possible.

If we move ε in one direction, the adversary places the gate at
ε

1′000′000 in the other direction.
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A Natural Problem Appearing in Numerous Scenarios

A robot trying to get around an obstacle.

k-server problem. [Fiat,Rabani,Ravid‘91]

Different algorithms available to solve an instance, which one to

choose. (Hybrid algorithms [Kao,Ma,Sipser,Yin‘01])

6



We can restrict ourselves to strategies which

move to t1, turn and

move to −t2, turn and

move to t3, turn and

. . .

time

↓

for T = (t1, t2, t3, . . .) ∈ (R+)N.

(1,2,4, . . . ,2i, . . .) gives 9-competitive strategy.
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Robots searching a line for a target . . .

robots are cheap, we can send out more robots (and the problem

gets boring) . . .

but then, robots are cheap but faulty, . . .

[Czyzowicz,Kranakis,Krizanc,Narayanan,Opatrny PODC’16] some

of the robots are faulty (i.e. fail to report the target despite of

hitting it).

They suggest a strategy that, e.g. given k = 3 robots, f = 1

faulty, finds the target at x in time λ|x|, λ ≈ 5.24.

Is this tight?

8



Robots searching a line for a target . . .

robots are cheap, we can send out more robots (and the problem

gets boring) . . .

but then, robots are cheap but faulty, . . .

[Czyzowitz,Kranakis,Krizanc,Narayanan,Opatrny PODC’16] some

of the robots are faulty (i.e. fail to report the target despite of

hitting it).

They suggest a strategy that, e.g. given k = 3 robots, f = 1

faulty, finds the target at x in time λ|x|, λ ≈ 5.24.

Is this tight?

9



Robots searching a line for a target . . .

robots are cheap, we can send out more robots (and the problem

gets boring) . . .

but then, robots are cheap but faulty, . . .

[Czyzowitz,Kranakis,Krizanc,Narayanan,Opatrny PODC’16] some

of the robots are faulty (i.e. fail to report the target despite of

hitting it).

They suggest a strategy that, e.g. given k = 3 robots, f = 1

faulty, finds the target at x in time λ|x|, λ ≈ 5.24.

Is this tight? (They show a lower bound of λ > 3.76.)
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Strategy from
[CKKNO‘16]:
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Our Contribution

Given k robots, f faulty, f < k < 2(f + 1) we provide lower

bounds matching the upper bounds of [CKKNO‘16].

k = f : all faulty, not much we can do.

k = 2(f + 1): send f + 1 to the left and f + 1 to the right –

gives a 1-competitive strategy.

In order to be λ-competitive, we have to make sure that every x,

|x| ∈ R≥1, is visited by at ≥ f+1 robots in time ≤ λ|x|; otherwise

the adversary places the target there and chooses the first f

robots arriving to be faulty.
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In order to be λ-competitive, we have to make sure that every

x, |x| ∈ R≥1 is visited by at ≥ f + 1 robots in time ≤ λ|x|.

That means that for all x ∈ R≥1, at least

2(f + 1)− k =: s

robots must visit {−x, x} in time ≤ λx.

Def.: Robot r λ-covers x if it visits {−x, x} in time ≤ λx.

Def.: A strategy for k robots (λ, s)-covers x, if ≥ s robots

λ-cover x.

Lemma: A strategy for k robots, f faulty, is λ-competitive ⇒
the strategy (λ, s)-covers R≥1.
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Wake up - Entry Point!

Def.: Robot r λ-covers x if it visits {−x, x} in time ≤ λx.

Def.: A strategy for k robots (λ, s)-covers x, if ≥ s robots

λ-cover x.

New Goal: Given k and s, provide a lower bound on λ, for

(λ, s)-covering of R≥1 with k robots.
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Result

Theorem: (λ, s)-covering with k-robots is impossible if

λ < 2
k

√
(k + s)k+s

sskk
+ 1 .

Without proof (but easy to show): If (λ, s)-covering is possible,

then with strategies

T (r) = (t(r)1 , t
(r)
2 , t

(r)
3 , . . .), r = 1,2,3, . . . , k

where 1 ≤ t(r)1 ≤ t(r)2 ≤ t(r)3 ≤ · · · .
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Given a strategy T = (t1, t2, t3, . . .) and x with ti−1 < x < ti, then

{−x, x} is visited in time

2(t1 + t2 + · · ·+ ti) + x

That is, x is λ-covered iff

2(t1 + · · ·+ ti) + x ≤ λx

⇔ x ≥
1

µ
(t1 + · · ·+ ti),

µ := λ−1
2
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ti−1 < x < ti, x is λ-covered iff x ≥
1

µ
(t1 + · · ·+ ti)︸ ︷︷ ︸

=:t′′i

.

Robot r with strategy T (r) = T = (t1, t2, t3, . . .) λ-covers exactly

⋃
i
[t′′i , ti]

We choose values t′i, t
′′
i ≤ t′i ≤ ti, such that the intervals (t′i, ti]

(of all robots) cover every x ∈ R>1 exactly s times.
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(
t
(r)
i

′
, t

(r)
i

]
, i ∈ N, r = 1,2 . . . , k, cover R>1 exactly s times.

t′i ≥
1

µ
(t1 + · · ·+ ti)

⇔ t1 + · · ·+ ti ≤ µt′i

⇔ ti ≤ µt′i − (t1 + · · ·+ ti−1)

Collect these intervals

in a common sequence,

sorted by left endpoints

(ties broken arbitrarily).
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Consider a prefix P of this sequence of intervals

P covers s times up to a point a = a(P) and there are numbers

a = as ≤ as−1 ≤ · · · ≤ a1

such that P covers j times for (aj+1, aj] and not at all for (a1,∞).

A(P) := {as, as−1, . . . , a1}
a multiset describing the “current covering situation”.
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Consider a prefix P of this sequence of intervals

t′i ≥
1

µ
(t1 + · · ·+ ti)

⇔ t1 + · · ·+ ti ≤ µt′i

⇔ ti ≤ µt′i − (t1 + · · ·+ ti−1)

The load of robot r in P:

L(r)(P) := t1 + . . .+ tir, where (t′ir, t
′
ir

] is r’s last interval in P

Observe L(r)(P) ≤ µt′ir ≤ µa.

Intuition: Large ai’s and small L(r)(P)’s are good for progress!
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Compress status quo in a function ti ≤ µt′i − (t1 + · · ·+ ti−1)

f(P) :=
k∏

r=1

(
L(r)(P)

)s
∏
y∈A(P) y

≤
(µa)sk

ask
= µsk

f(P) is bounded!

P+ is P extended by the next interval

t
(r∗)
ir∗+1

′
= a

(
t
(r∗)
ir∗+1

′
, tir∗+1

]
tir∗+1

= µ∗a− L(r∗)(P),0 < µ∗ ≤ µ

⇒ L(r∗)(P+) = µ∗a

f(P+)

f(P)
=

ak(
L(r∗)(P)

)s · (µ∗a)s(
µ∗a− L(r∗)(P)

)k =
µ∗s

xs(µ∗ − x)k

x := L(r∗)(P)
a , 0 < µ∗ ≤ µ
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By simple high school calculus . . .

For 0 < x < µ∗ ≤ µ,

µ∗s

xs(µ∗ − x)k
≥

(k + s)k+s

sskkµ∗k

and thus

µ∗s

xs(µ∗ − x)k
≥ δ

for δ := (k+s)k+s

sskkµk
> 1, provided µ < k

√
(k+s)k+s

sskk
.

If µ∗s

xs(µ∗−x)k
≥ δ > 1, then f(P) is unbounded — contradiction.
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Hence, µ < k

√
(k+s)k+s

sskk
is impossible. Recall λ = 2µ+ 1.

Theorem: (λ, s)-covering with k-robots is impossible if

λ < 2
k

√
(k + s)k+s

sskk
+ 1 .

and thus λ-competitive searching with k robots, f faulty, if s =

2(f + 1)− k.

Open Problem: What if there are f Byzantine robots (mali-

cious, wrongly report a target). Even for k = 3, f = 1, we don’t

know whether better than 9-competitive is possible.
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Hence, µ < k

√
(k+s)k+s

sskk
is impossible. Recall λ = 2µ+ 1.

Theorem: (λ, s)-covering with k-robots is impossible if

λ < 2
k

√
(k + s)k+s

sskk
+ 1 .

and thus λ-competitive searching with k robots, f faulty, if s =

2(f + 1)− k.

Generalization: We can solve the m-ray case. Some particular

cases were asked by several groups of researchers.
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