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[Richard E. Bellman‘63] Suppose that we know that a particle

is located in the interval (x, x+dx), somewhere along the real

line −∞ < x <∞ with a probability density function g(x). We

start at some initial point x0 and can move in either direction.

What policy minimizes the expected time required to find the

particle,

[Anatole Beck‘64]: A man in an automobile searches for

another man who is located at some point of a certain road.

He starts at a given point and knows in advance the probability

that the second man is at any given point of the road. Since the

man being sought might be in either direction . . .
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Anatole Beck wrote quite a few papers on the topic:

On the linear search problem (1964)

More on the linear search problem (1965)

Yet more on the linear search problem (1970)

The return of the linear search problem (1973)

Son of the linear search problem (1984)

The linear search problem rides again (1986)

The revenge of the linear search problem (1992)
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Computer Science rediscovers the problem

Cow Path Problem – Cow at a Fence Problem

[Baeza-Yates,Culberson,Rawlins‘88]: A cow comes to an in-

finitely long straight fence. The cow knows that there is a

gate in the fence, and she wants to get to the other side. Un-

fortunately, she doesn’t know where the gate is located . . .

We start at 0 (origin), move at constant speed 1, and want to

find the target at x, |x| ≥ 1, in time at most λ|x|, λ as small as

possible. (λ-competitive)

[Beck,Newman‘70] λ = 9 is tight.

rand.4.591−comp.[Kao,Reif,Tate‘94]
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Note: Without “|x| ≥ 1” no competitive ratio is possible.

If we move ε in one direction, the adversary places the gate at
ε

1′000′000 in the other direction.
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A Natural Problem Appearing in Numerous Scenarios

A robot trying to get around an obstacle.

k-server problem. [Fiat,Rabani,Ravid‘91]

Different algorithms available to solve an instance, which one to

choose. (Hybrid algorithms [Kao,Ma,Sipser,Yin‘01])
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We can restrict ourselves to strategies which

move to t1, turn and

move to −t2, turn and

move to t3, turn and

. . .

time

↓

for T = (t1, t2, t3, . . .) ∈ (R+)N.

(1,2,4, . . . ,2i, . . .) gives 9-competitive strategy.
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Robots searching a line for a target . . .

robots are cheap, we can send out more robots (and the problem

gets boring) . . .

but then, robots are cheap but faulty, . . .

[Czyzowicz,Kranakis,Krizanc,Narayanan,Opatrny PODC’16] some

of the robots are faulty (i.e. fail to report the target despite of

hitting it).

They suggest a strategy that, e.g. given k = 3 robots, f = 1

faulty, finds the target at x in time λ|x|, λ ≈ 5.24.

Is this tight?
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Robots searching a line for a target . . .

robots are cheap, we can send out more robots (and the problem

gets boring) . . .

but then, robots are cheap but faulty, . . .

[Czyzowitz,Kranakis,Krizanc,Narayanan,Opatrny PODC’16] some

of the robots are faulty (i.e. fail to report the target despite of

hitting it).

They suggest a strategy that, e.g. given k = 3 robots, f = 1

faulty, finds the target at x in time λ|x|, λ ≈ 5.24.

Is this tight? (They show a lower bound of λ > 3.76.)
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Strategy from
[CKKNO‘16]:
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Related, older problem

Given k robots and m rays emanating from 0, k < m, find an

unknown target hidden on one of the rays with best competitive

ratio.

Three groups of researchers asked for the best competitive ratio:

Baeza-Yates, Culberson, and Rawlins; Kao, Ma, Sipser, and Yin;

Bernstein, Finkelstein, and Zilberstein.

The latter resolved the problem for a nice class of “cyclic” strate-

gies.

Can also consider the faulty version.
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Searching → Covering

Assume we have m rays and f faulty robots. Then each point

of each ray must be covered f + 1 times before we are sure that

the target is not there.
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Our Contribution

These problems can be relaxed to the following setting:

One-ray cover with returns (ORC): The goal is to cover

R≥1. The robot (robots) starts at 0 and moves with unit speed

along the ray R≥0. One robot may cover a point multiple times,

but different coverings are only counted if the robot visited 0 in

between.

Instead of covering m rays f + 1 times, we cover 1 ray q :=

m(f+1) times in the ORC setting. (The number of robots used

stays the same.)
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Our Contribution

For k robots and any q we provide matching lower bounds for

the ORC problem. The resulting lower bounds are also matching

lower bounds for the m-ray f-faulty k-robot search.

Thus, we resolve the problem from [CKKNO‘16], as well as the

no-faulty m-ray cover problem by the three groups of authors.

In order to be λ-competitive, we have to make sure that every x,

|x| ∈ R≥1, is visited by at ≥ f+1 robots in time ≤ λ|x|; otherwise

the adversary places the target there and chooses the first f

robots arriving to be faulty.
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Our Contribution

For k robots and any q we provide matching lower bounds for

the ORC problem. The resulting lower bounds are also matching

lower bounds for the m-ray f-faulty k-robot search.

Theorem (AK, Welzl) Fix q > k and put ρ := q
k. Then the

best possible competitive problem for the q-fold ORC cover with

k robots is

2
ρρ

(ρ− 1)ρ−1
+ 1. (1)

Thus, we resolve the problem from [CKKNO‘16], as well as the

no-faulty m-ray k-robot search problem posed by the three groups

of authors.
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In order to be λ-competitive, we have to make sure that every

x, |x| ∈ R≥1 is covered q times in time ≤ λ|x|. A robot λ-covers

a point x, if it visits x within time λx.

Round: the time a robot spends between two consecutive visits

of 0.

Can assume: In each round each robot turns once at a point t

and λ-covers some non-empty interval [x, t].
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If the turning point of a robot in round i is ti, then in the i+1-st

round the point x is λ-covered iff

2(t1 + · · ·+ ti) + x ≤ λx

⇔ x ≥
1

µ
(t1 + · · ·+ ti),

µ := λ−1
2

Therefore, for a fixed robot and its two consecutive rounds, if it

λ-covers intervals [x1, t1] and [x2, t2], then we can assume that

x1 ≤ x2.
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The intervals, λ-covered by robots in some rounds, must alto-

gether form a q-fold covering of R≥1.

By moving some of the left endpoints of these intervals to the

right, we can assume that each point of R≥1 is covered exactly

q times.

Moreover, we can do it in a way that for each robot the left

endpoints of the assigned intervals still form a non-decreasing

sequence.

Denote (x(r)
i , t

(r)
i ] the corresponding interval for the i-th round

of robot r.
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(
x

(r)
i , t

(r)
i

]
, i ∈ N, r = 1,2 . . . , k, cover R exactly q times.

t1 + · · ·+ ti ≤ µxi+1

⇔ ti ≤ µxi+1 − (t1 + · · ·+ ti−1)

Collect these intervals

in a common sequence,

sorted by left endpoints

(ties broken arbitrarily).
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Consider a prefix P of this sequence of intervals

P covers q times up to a point a = a(P) and there are numbers

a = aq ≤ aq−1 ≤ · · · ≤ a1

such that P covers j times for (aj+1, aj] and not at all for (a1,∞).

A(P) := {aq, aq−1, . . . , a1}
a multiset describing the “current covering situation”.
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Consider a prefix P of this sequence of intervals

t1 + · · ·+ ti ≤ µxi+1

⇔ ti ≤ µxi+1 − (t1 + · · ·+ ti−1)

The load of robot r in P:

L(r)(P) := t1 + . . .+ tir, where (xir, tir] is r’s last interval in P

Observe L(r)(P) ≤ µxir + 1.

Intuition: Large ai’s and small L(r)(P)’s are good for progress!
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Compress status quo in a function

f(P) :=
k∏

r=1

(
L(r)(P)

)q−k
(x(r)
ir+1)k∏

y∈A(P) y
≤
µ(q−k)k(Ca)qk

ask
= Cqkµ(q−k)k,

where C = maxi,r
x

(r)
i+1

x
(r)
i

. If C is bounded, then f(P) is bounded!

P+ is P extended by the next interval

x
(j)
ij+1 = a

(
a, t

(j)
ij+1

]
L(j)(P+) = µ∗x(j)

ir+2, 0 < µ∗ ≤ µ
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ti ≤ µt′i − (t1 + · · ·+ ti−1)

f(P) :=
k∏

r=1

(
L(r)(P)

)q−k
(x(r)
ir+1)k∏

y∈A(P) y
≤
µ(q−k)k(Ca)qk

ask
= Cqkµ(q−k)k,

P+ is P extended by the next interval

x
(j)
ij+1 = a

(
a, t

(j)
ij+1

]
L(j)(P+) = µ∗x(j)

ir+2, 0 < µ∗ ≤ µ

⇒ tij+1 = µ∗x(j)
ij+2 − L(j)(P),

Put b := x
(j)
ij+2. Then

f(P+)

f(P)
=

(µ∗b)q−kbk(
L(j)(P)

)q−k (
µ∗b− L(j)(P)

)k =
µ∗s

xs(µ∗ − x)k

x := L(r∗)(P)
a , 0 < µ∗ ≤ µ
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yq−k(µ∗ − y)k
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By simple high school calculus . . .

For 0 < x < µ∗ ≤ µ,

µ∗q−k

xq−k(µ∗ − x)k
≥

qq

(q − k)q−kkkµ∗k

and thus

µ∗q−k

xq−k(µ∗ − x)k
≥ δ

for δ := qq

(q−k)q−kkkµk
> 1, provided µ < k

√
qq

(q−k)q−kkk
= ρρ

(ρ−1)ρ−1.

For ρ := q
k. If δ > 1, then f(P) is unbounded — contradiction.
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What if C = maxi,r
x

(r)
i+1

x
(r)
i

is unbounded? We do induction on k: a

large interval is covered q − 1 times by k − 1 robots, and it has

larger competitive ratio.

Recall λ = 2µ+ 1.

Theorem (AK, Welzl) Fix q > k and put ρ := q
k. Then the

best possible competitive problem for the q-fold ORC cover with

k robots is

2
ρρ

(ρ− 1)ρ−1
+ 1. (2)

31



What if C = maxi,r
x

(r)
i+1

x
(r)
i

is unbounded? Then we do induction:

basically, a large interval is covered q − 1 times by k − 1 robots,

and it has larger competitive ratio.

Recall λ = 2µ+ 1.

Theorem (AK, Welzl) Fix q > k and put ρ := q
k. Then the

best possible competitive problem for the q-fold ORC cover with

k robots is

2
ρρ

(ρ− 1)ρ−1
+ 1. (3)
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