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Definitions

Denote
(
[n]
k

)
: the set of all k-element subsets of [n].

A subset F ⊂
(
[n]
k

)
is called a family .

A matching of size s in F : s pairwise disjoint sets F1, . . . , Fs ∈ F .

The matching number ν(F) of F : the size of the largest matching in F .

If ν(F) = 1, then F is intersecting: any two sets in F intersect.



The extremal quantity

Define

ek(n, s) :=max
{
|F| : F ⊂

(
[n]

k

)
, ν(F) < s

}
.

Theorem (Erdős-Ko-Rado, 1938-1961)

ek(n, 2) =

(
n− 1

k − 1

)
for n > 2k.

The theorem is tight. Consider the family
{
A ∈

(
[n]

k

)
: 1 ∈ A

}
.

For n = 2k the family

(
[2k − 1]

k

)
has the same cardinality.
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The Erdős Matching Conjecture

How to construct a large family F ⊂
(
[n]
k

)
, satisfying ν(F) < s?

A(k)(n, s) :=
{
A ∈

(
[n]

k

)
: A∩ [s− 1] 6= ∅

}
, B(k)(n, s) :=

(
[sk − 1]

k

)
.

We have |A(k)(n, s) =
(n
k

)
−

(n−s+1
k

)
, |B(k)(n, s)| =

(sk−1
k

)
.

The Erdős Matching Conjecture, 1965

For n > sk we have

ek(n, s) = max
{
|A(k)(n, s)|, |B(k)(n, s)|

}
.

Put x := s/n. If k is fixed and s→∞: |A|/
(
n
k

)
→ 1− (1− x)k,

|B|/
(
n
k

)
→ (kx)k.
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Asymptotic fractional version of the EMC.

A fractional matching for F ⊂ 2[n]: a function w : F → [0, 1], such that∑
F∈F :i∈F

w(F ) 6 1 for every element i ∈ [n].

Fractional matching number ν∗(F):
the size of the largest fractional matching in F .

Conjecture A (Alon et. al., 2012)

Let x ∈ [0, 1/k] be fixed and let Fn ⊂
(
[n]
k

)
be a sequence of families

such that ν∗(F) 6 xn. Then

lim sup
n→∞

|F|(
n
k

) 6 max
{
1− (1− x)k, (kx)k

}
.
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Deviation of sums of random variables

X := (X1, . . . , Xk): Xi > 0 are i.i.d. random variables, E[Xi] = x.

mk(x) := sup
X

Pr[X1 + . . .+Xk > 1].

Note: mk(x) = 1 for x > 1/k.

Conjecture B ( Luczak, Mieczkowska, Šileikis, 2017)

mk(x) = max
{
1− (1− x)k, (kx)k

}
.

Case k = 2 was resolved by Hoeffding and Shrikhande (1955).

Related conjectures of Samuels (1966) and Feige (2006) speak about
random variables that are not necessarily identically distributed.

Results of Samuels (1966, 1968) imply Conjecture B for k = 3, 4.
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Conjectures A and B are equivalent

(Alon, Frankl, Huang, Rödl, Ruciński, Sudakov, 2012)

Conjecture B ⇒ Conjecture A. Take the largest F with ν∗(F) 6 xn.
By LP-duality: (ν∗ = τ∗) there exists w : [n]→ [0, 1], such that∑

i∈[n]

w(i) = xn, and
∑
i∈F

w(i) > 1 for every F ∈ F .

Define a random variable: w(t) for a randomly chosen t ∈ [n]. Form
v := (w(t1), . . . , w(tk)). Then

mk(x) > Pr
[ k∑
i=1

w(ti) > 1
]
& Pr[v ∈ F ] = |F|(n

k

) .



What do we know about EMC?

True for k = 2 (Erdős and Gallai, 1959)

True for k = 3 ( Luczak and Mieczkowska, 2014, for large s; Frankl,
2017, for all s).

True for n > n0(s, k) (Erdős, 1965)

True for n > 2k3s (Bollobás, Daykin, Erdős, 1976)

True for n > 100ks2 (Frankl, Füredi, 1987)

True for n > 3k2s (Huang, Loh, Sudakov, 2012)

True for n > (2s− 1)k − s (Frankl, 2013)

Connections to large deviation bounds, frac versions (Alon et. al. 2012)

Equivalence of Conjectures A, B ( Luczak, Mieczkowska, Šileikis, 2017)

ek(n, s) 6 (s− 1)
(
n−1
k−1
)

(Frankl, 1987)
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True for k = 2 (Erdős and Gallai, 1959)

True for k = 3 ( Luczak and Mieczkowska, 2014, for large s; Frankl,
2017, for all s).

True for n > n0(s, k) (Erdős, 1965)
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New results

Theorem (AK, Frankl, 2018+)

There exists s0 such that the EMC is true for s > s0, any k and
n > 5

3sk −
2
3s.

Consequently, Conjectures A and B hold for x < 3
5k−2 . Previous best due

to the equivalence and the result of Frankl: x < 1
2k−1 .

We also get a bound ek(n, s) 6 c(s− 1)
(
n−1
k−1
)
, where c < 1 and depends

on sk/n.



Dirac-type thresholds

md
k(n) (fdk (n)): minimum d-degree in F ⊂

(
[n]
k

)
that guarantees the

existence of a perfect (fractional) matching.

Theorem (Alon et. al., 2012; Treglown and Zhao, 2016)

If lim supn→∞ fdk (n)/
(
n−d
k−d
)
= c∗, then

lim sup
n→∞

md
k(n)/

(
n− d
k − d

)
= max{c∗, 1/2}.

If c∗ < 1/2, then we know md
k(n) exactly for large n. Also,

fdk (n) 6 ek−d(n, n/k) + 1.

Corollary (Kupavskii, Frankl, 2018+)

Determination of c∗ for d > 2k/5; exact values of md
k(n) for d > 3k/8.

Previous best: for d > k/2: Pikhurko (2008) for d 6 k − 2;
Rödl, Ruciński, Szemerédi (2006) for d = k − 1.
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Proof ingredients

Take the approach of Frankl as a base. The original approach uses:

1. Shifting.

2. Shadows of families with small matching numbers.

3. Inequality on the sum of sizes of cross-dependent families.

We add the following ingredients:

4. Better bounds on shadows.

5. Concentration inequalities for intersections of families and matchings.

6. Induction
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A concentration inequality

Consider a family F ⊂
(
[n]
k

)
for n = kt of density α := |F|/

(
n
k

)
.

Take a t-matching M⊂
(
[n]
k

)
uniformly at random.

Define a random variable η := |M ∩ F|. Then E[η] = αt.

Theorem (AK, Frankl, 2018+)

For any β > 0, we have Pr
[
|η − αt| > 2β

√
t
]
6 2e−β

2/2.



Proof outline

Assume M = {M1, . . . ,Mt}. We have η = η1 + . . .+ ηt, where ηi
indicates if Mi ∈ F .

Define a martingale X0, . . . , Xt, where Xi := E[η | ηi, . . . , η1].

Note that X0 = E[X0] and Xt = η.

Assume |Xi −Xi−1| 6 2 for any i.

Azuma-Hoeffding inequality (1963, 1967)

If X0, . . . , Xt is a martingale and |Xi −Xi−1| 6 2 for any i ∈ [t], then

Pr
[
|Xt −X0| > 2β

√
t
]
6 2e−β

2/2.
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Proof of |Xi −Xi−1| 6 2 for any i

Yi−1 := E[η |M1, . . . ,Mi−1] and Yi := E[η | ηi,M1, . . . ,Mi−1].

It is sufficient to show |Yi − Yi−1| 6 2.

Fix M1, . . . ,Mi−1, put S := [n] \ (∪i−1j=1Mj) and consider F ′ := F ∩
(
S
k

)
.

Kneser graph KGS,k: vertices —
(
S
k

)
,

edges — pairwise disjoint sets.

F ′ ⊂
(
S
k

)
gives an induced subgraph of KGS,k.

Denote α′ := |F ′|/
(|S|
k

)
, e(F ′): proportion of edges of KGS,k

contained inside the subgraph induced on F ′.
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Yi−1 := E[η |M1, . . . ,Mi−1] and Yi := E[η | ηi,M1, . . . ,Mi−1].

Yi−1

t−i+1 = α′ (“the density of F ′”)

Yi: random variable with two values.

If ηi = 1, then Yi−1
t−i = 2e(F ′)

α′ (“the average degree of F ′”)

λ′: the second largest absolute value of an eigenvalue of KGS,k.

We use the Alon-Chung bound:∣∣∣2e(F ′)
α′

− α′
∣∣∣ 6 λ(1− α′)

d
.

In Kneser graphs: λ
d = 1

t−i . Therefore,

|Yi − Yi−1| 6 2.

Similar for ηi = 0
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Theorem (AK, Frankl, 2018+)

There exists s0 such that the following holds. Fix s > s0, k and
n > 5

3sk −
2
3s. Then any family F ⊂

(
[n]
k

)
with ν(F) < s satisfies

|F| 6
(
n

k

)
−
(
n− s+ 1

k

)
.

Theorem (AK, Frankl, 2018+)

Take k, t ∈ N and n = kt. Fix F ⊂
(
[n]
k

)
of density α. For any β > 0 the

random variable η := |M∩F|, where M is randomly chosen t-matching,
satisfies

Pr
[
|η − αt| > 2β

√
t
]
6 2e−β

2/2.


