The Erdős Matching Conjecture and related questions

Andrey Kupavskii

University of Birmingham
https://www.birmingham.ac.uk/
Moscow Institute of Physics and Technology https://mipt.ru/english/

Definitions

Denote $\binom{[n]}{k}$: the set of all k-element subsets of $[n]$.

$$
\text { A subset } \mathcal{F} \subset\binom{[n]}{k} \text { is called a family. }
$$

A matching of size s in $\mathcal{F}: \quad s$ pairwise disjoint sets $F_{1}, \ldots, F_{s} \in \mathcal{F}$. The matching number $\nu(\mathcal{F})$ of \mathcal{F} : the size of the largest matching in \mathcal{F}.

If $\nu(\mathcal{F})=1$, then \mathcal{F} is intersecting: any two sets in \mathcal{F} intersect.

The extremal quantity

Define

$$
e_{k}(n, s):=\max \left\{|\mathcal{F}|: \mathcal{F} \subset\binom{[n]}{k}, \nu(\mathcal{F})<s\right\} .
$$

Theorem (Erdős-Ko-Rado, 1938-1961)

$$
e_{k}(n, 2)=\binom{n-1}{k-1} \quad \text { for } \quad n \geqslant 2 k \text {. }
$$

The theorem is tight. Consider the family $\left\{A \in\binom{[n]}{k}: 1 \in A\right\}$. For $n=2 k$ the family

has the same cardinality.

The extremal quantity

Define

$$
e_{k}(n, s):=\max \left\{|\mathcal{F}|: \mathcal{F} \subset\binom{[n]}{k}, \nu(\mathcal{F})<s\right\} .
$$

Theorem (Erdős-Ko-Rado, 1938-1961)

$$
e_{k}(n, 2)=\binom{n-1}{k-1} \text { for } n \geqslant 2 k .
$$

The theorem is tight. Consider the family $\left\{A \in\binom{[n]}{k}: 1 \in A\right\}$. For $n=2 k$ the family $\quad\binom{[2 k-1]}{k}$ has the same cardinality.

The extremal quantity

Define

$$
e_{k}(n, s):=\max \left\{|\mathcal{F}|: \mathcal{F} \subset\binom{[n]}{k}, \nu(\mathcal{F})<s\right\} .
$$

Theorem (Erdős-Ko-Rado, 1938-1961)

$$
e_{k}(n, 2)=\binom{n-1}{k-1} \quad \text { for } \quad n \geqslant 2 k .
$$

The theorem is tight. Consider the family $\left\{A \in\binom{[n]}{k}: 1 \in A\right\}$.
For $n=2 k$ the family $\quad\binom{[2 k-1]}{k} \quad$ has the same cardinality.

The Erdős Matching Conjecture

How to construct a large family $\mathcal{F} \subset\binom{[n]}{k}$, satisfying $\nu(\mathcal{F})<s$?
$\mathcal{A}^{(k)}(n, s):=\left\{A \in\binom{[n]}{k}: A \cap[s-1] \neq \emptyset\right\}, \quad \mathcal{B}^{(k)}(n, s):=\binom{[s k-1]}{k}$.
We have

$$
\left.\left|\mathcal{A}^{(k)}(n, s)=\binom{n}{k}-\binom{n-s+1}{k}, \quad\right| \mathcal{B}^{(k)}(n, s) \right\rvert\,=\binom{s k-1}{k} .
$$

The Erdős Matching Conjecture, 1965
For $n \geqslant s k$ we have

$$
e_{k}(n, s)=\max \left\{\left|\mathcal{A}^{(k)}(n, s)\right|,\left|\mathcal{B}^{(k)}(n, s)\right|\right\}
$$

The Erdős Matching Conjecture

How to construct a large family $\mathcal{F} \subset\binom{[n]}{k}$, satisfying $\nu(\mathcal{F})<s$?
$\mathcal{A}^{(k)}(n, s):=\left\{A \in\binom{[n]}{k}: A \cap[s-1] \neq \emptyset\right\}, \quad \mathcal{B}^{(k)}(n, s):=\binom{[s k-1]}{k}$.
We have

$$
\left.\left|\mathcal{A}^{(k)}(n, s)=\binom{n}{k}-\binom{n-s+1}{k}, \quad\right| \mathcal{B}^{(k)}(n, s) \right\rvert\,=\binom{s k-1}{k} .
$$

The Erdős Matching Conjecture, 1965
For $n \geqslant s k$ we have

$$
e_{k}(n, s)=\max \left\{\left|\mathcal{A}^{(k)}(n, s)\right|,\left|\mathcal{B}^{(k)}(n, s)\right|\right\} .
$$

Put $x:=s / n$. If k is fixed and $s \rightarrow \infty: \begin{aligned} & |\mathcal{A}| /\binom{n}{k} \rightarrow 1-(1-x)^{k}, \\ & \\ & |\mathcal{B}| /\binom{n}{k} \rightarrow(k x)^{k} .\end{aligned}$

The Erdős Matching Conjecture

How to construct a large family $\mathcal{F} \subset\binom{[n]}{k}$, satisfying $\nu(\mathcal{F})<s$?
$\mathcal{A}^{(k)}(n, s):=\left\{A \in\binom{[n]}{k}: A \cap[s-1] \neq \emptyset\right\}, \quad \mathcal{B}^{(k)}(n, s):=\binom{[s k-1]}{k}$.
We have

$$
\left.\left|\mathcal{A}^{(k)}(n, s)=\binom{n}{k}-\binom{n-s+1}{k}, \quad\right| \mathcal{B}^{(k)}(n, s) \right\rvert\,=\binom{s k-1}{k} .
$$

The Erdős Matching Conjecture, 1965
For $n \geqslant s k$ we have

$$
e_{k}(n, s)=\max \left\{\left|\mathcal{A}^{(k)}(n, s)\right|,\left|\mathcal{B}^{(k)}(n, s)\right|\right\} .
$$

Put $x:=s / n$. If k is fixed and $s \rightarrow \infty: \quad|\mathcal{A}| /\binom{n}{k} \rightarrow 1-(1-x)^{k}$, $|\mathcal{B}| /\binom{n}{k} \rightarrow(k x)^{k}$.

Asymptotic fractional version of the EMC.

A fractional matching for $\mathcal{F} \subset 2^{[n]}$: a function $w: \mathcal{F} \rightarrow[0,1]$, such that

$$
\sum_{F \in \mathcal{F}: i \in F} w(F) \leqslant 1 \quad \text { for every element } i \in[n]
$$

Fractional matching number $\nu^{*}(\mathcal{F})$: the size of the largest fractional matching in \mathcal{F}.

Conjecture A (Alon et. al., 2012)
Let $x \in[0,1 / k]$ be fixed and let $\mathcal{F}_{n} \subset\binom{[n]}{k}$ be a sequence of families such that $\nu^{*}(\mathcal{F}) \leqslant x n$. Then

$$
\limsup _{n \rightarrow \infty} \frac{|\mathcal{F}|}{\binom{n}{k}} \leqslant \max \left\{1-(1-x)^{k},(k x)^{k}\right\} .
$$

Asymptotic fractional version of the EMC.

A fractional matching for $\mathcal{F} \subset 2^{[n]}$: a function $w: \mathcal{F} \rightarrow[0,1]$, such that

$$
\sum_{F \in \mathcal{F}: i \in F} w(F) \leqslant 1 \quad \text { for every element } i \in[n]
$$

Fractional matching number $\nu^{*}(\mathcal{F})$: the size of the largest fractional matching in \mathcal{F}.

Conjecture A (Alon et. al., 2012)
Let $x \in[0,1 / k]$ be fixed and let $\mathcal{F}_{n} \subset\binom{[n]}{k}$ be a sequence of families such that $\nu^{*}(\mathcal{F}) \leqslant x n$. Then

$$
\limsup _{n \rightarrow \infty} \frac{|\mathcal{F}|}{\binom{n}{k}} \leqslant \max \left\{1-(1-x)^{k},(k x)^{k}\right\} .
$$

Deviation of sums of random variables

$\mathbf{X}:=\left(X_{1}, \ldots, X_{k}\right): X_{i} \geqslant 0$ are i.i.d. random variables, $\mathrm{E}\left[X_{i}\right]=x$.

$$
m_{k}(x):=\sup _{\mathbf{X}} \operatorname{Pr}\left[X_{1}+\ldots+X_{k} \geqslant 1\right] .
$$

Note: $m_{k}(x)=1$ for $x \geqslant 1 / k$.
Conjecture B (Łuczak, Mieczkowska, Šileikis, 2017)

$$
m_{k}(x)=\max \left\{1-(1-x)^{k},(k x)^{k}\right\} .
$$

Case $k=2$ was resolved by Hoeffding and Shrikhande (1955).
Related conjectures of Samuels (1966) and Feige (2006) speak about random variables that are not necessarily identically distributed.
Results of Samuels $(1966,1968)$ imply Conjecture B for $k=3,4$.

Deviation of sums of random variables

$\mathbf{X}:=\left(X_{1}, \ldots, X_{k}\right): X_{i} \geqslant 0$ are i.i.d. random variables, $\mathrm{E}\left[X_{i}\right]=x$.

$$
m_{k}(x):=\sup _{\mathbf{X}} \operatorname{Pr}\left[X_{1}+\ldots+X_{k} \geqslant 1\right] .
$$

Note: $m_{k}(x)=1$ for $x \geqslant 1 / k$.
Conjecture B (Łuczak, Mieczkowska, Šileikis, 2017)

$$
m_{k}(x)=\max \left\{1-(1-x)^{k},(k x)^{k}\right\} .
$$

Case $k=2$ was resolved by Hoeffding and Shrikhande (1955).
Related conjectures of Samuels (1966) and Feige (2006) speak about random variables that are not necessarily identically distributed.
Results of Samuels $(1966,1968)$ imply Conjecture B for $k=3,4$.

Conjectures A and B are equivalent

(Alon, Frankl, Huang, Rödl, Ruciński, Sudakov, 2012)

Conjecture $\mathbf{B} \Rightarrow$ Conjecture \mathbf{A}. Take the largest \mathcal{F} with $\nu^{*}(\mathcal{F}) \leqslant x n$. By LP-duality: $\left(\nu^{*}=\tau^{*}\right)$ there exists $w:[n] \rightarrow[0,1]$, such that

$$
\sum_{i \in[n]} w(i)=x n, \quad \text { and } \sum_{i \in F} w(i) \geqslant 1 \text { for every } F \in \mathcal{F}
$$

Define a random variable: $w(t)$ for a randomly chosen $t \in[n]$. Form $\mathbf{v}:=\left(w\left(t_{1}\right), \ldots, w\left(t_{k}\right)\right)$. Then

$$
m_{k}(x) \geqslant \operatorname{Pr}\left[\sum_{i=1}^{k} w\left(t_{i}\right) \geqslant 1\right] \gtrsim \operatorname{Pr}[\mathbf{v} \in \mathcal{F}]=\frac{|\mathcal{F}|}{\binom{n}{k}}
$$

What do we know about EMC?

True for $k=2 \quad$ (Erdős and Gallai, 1959)
True for $k=3$ (Łuczak and Mieczkowska, 2014, for large s; Frankl, 2017, for all s).

True for $n>n_{0}(s, k)$
True for $n>2 k^{3} s$
True for $n>100 k s^{2}$
True for $n>3 k^{2} s$
True for $n \geqslant(2 s-1) k-s$
(Erdős, 1965)
(Bollobás, Daykin, Erdős, 1976)
(Frankl, Füredi, 1987)
(Huang, Loh, Sudakov, 2012)
(Frankl, 2013)

Connections to large deviation bounds, frac versions (Alon et. al. 2012)
Equivalence of Conjectures A, B (Łuczak, Mieczkowska, Šileikis, 2017)
(Frankl, 1987)

What do we know about EMC?

True for $k=2 \quad$ (Erdős and Gallai, 1959)
True for $k=3$ (Łuczak and Mieczkowska, 2014, for large s; Frankl, 2017, for all s).

True for $n>n_{0}(s, k)$
True for $n>2 k^{3} s$
True for $n>100 k s^{2}$
True for $n>3 k^{2} s$
True for $n \geqslant(2 s-1) k-s$
(Erdős, 1965)
(Bollobás, Daykin, Erdős, 1976)
(Frankl, Füredi, 1987)
(Huang, Loh, Sudakov, 2012)
(Frankl, 2013)
Connections to large deviation bounds, frac versions (Alon et. al. 2012)
Equivalence of Conjectures A, B (Łuczak, Mieczkowska, Šileikis, 2017)
$e_{k}(n, s) \leqslant(s-1)\binom{n-1}{k-1}$
(Frankl, 1987)

New results

Theorem (AK, Frankl, 2018+)
There exists s_{0} such that the EMC is true for $s \geqslant s_{0}$, any k and $n \geqslant \frac{5}{3} s k-\frac{2}{3} s$.

Consequently, Conjectures A and B hold for $x<\frac{3}{5 k-2}$. Previous best due to the equivalence and the result of Frankl: $x<\frac{1}{2 k-1}$.

We also get a bound $e_{k}(n, s) \leqslant c(s-1)\binom{n-1}{k-1}$, where $c<1$ and depends on $s k / n$.

Dirac-type thresholds

$m_{k}^{d}(n)\left(f_{k}^{d}(n)\right)$: minimum d-degree in $\mathcal{F} \subset\binom{[n]}{k}$ that guarantees the existence of a perfect (fractional) matching.

Theorem (Alon et. al., 2012; Treglown and Zhao, 2016)
If $\lim \sup _{n \rightarrow \infty} f_{k}^{d}(n) /\binom{n-d}{k-d}=c^{*}$, then

$$
\limsup _{n \rightarrow \infty} m_{k}^{d}(n) /\binom{n-d}{k-d}=\max \left\{c^{*}, 1 / 2\right\} .
$$

If $c^{*}<1 / 2$, then we know $m_{k}^{d}(n)$ exactly for large n. Also,

$$
f_{k}^{d}(n) \leqslant e_{k-d}(n, n / k)+1 .
$$

Corollary (Kupavskii, Frankl, 2018+)
Determination of c^{*} for $d \geqslant 2 k / 5$; exact values of $m_{k}^{d}(n)$ for $d \geqslant 3 k / 8$.
Previous best: for $d \geqslant k / 2$: Pikhurko (2008) for $d \leqslant k-2$;

Dirac-type thresholds

$m_{k}^{d}(n)\left(f_{k}^{d}(n)\right)$: minimum d-degree in $\mathcal{F} \subset\binom{[n]}{k}$ that guarantees the existence of a perfect (fractional) matching.

Theorem (Alon et. al., 2012; Treglown and Zhao, 2016)
If $\lim \sup _{n \rightarrow \infty} f_{k}^{d}(n) /\binom{n-d}{k-d}=c^{*}$, then

$$
\limsup _{n \rightarrow \infty} m_{k}^{d}(n) /\binom{n-d}{k-d}=\max \left\{c^{*}, 1 / 2\right\} .
$$

If $c^{*}<1 / 2$, then we know $m_{k}^{d}(n)$ exactly for large n. Also,

$$
f_{k}^{d}(n) \leqslant e_{k-d}(n, n / k)+1 .
$$

Corollary (Kupavskii, Frankl, 2018+)
Determination of c^{*} for $d \geqslant 2 k / 5$; exact values of $m_{k}^{d}(n)$ for $d \geqslant 3 k / 8$.
Previous best: for $d \geqslant k / 2$: Pikhurko (2008) for $d \leqslant k-2$;
Rödl, Ruciński, Szemerédi (2006) for $d=k-1$.

Proof ingredients

Take the approach of Frankl as a base. The original approach uses:

1. Shifting.
2. Shadows of families with small matching numbers.
3. Inequality on the sum of sizes of cross-dependent families.

We add the following ingredients:
4. Better bounds on shadows.
5. Concentration inequalities for intersections of families and matchings.
6. Induction

Proof ingredients

Take the approach of Frankl as a base. The original approach uses:

1. Shifting.
2. Shadows of families with small matching numbers.
3. Inequality on the sum of sizes of cross-dependent families.

We add the following ingredients:
4. Better bounds on shadows.
5. Concentration inequalities for intersections of families and matchings.
6. Induction

Proof ingredients

Take the approach of Frankl as a base. The original approach uses:

1. Shifting.
2. Shadows of families with small matching numbers.
3. Inequality on the sum of sizes of cross-dependent families.

We add the following ingredients:
4. Better bounds on shadows.
5. Concentration inequalities for intersections of families and matchings.
6. Induction.

A concentration inequality

Consider a family $\mathcal{F} \subset\left(\begin{array}{c}{\left[\begin{array}{c}n] \\ k\end{array}\right)}\end{array}\right)$ for $n=k t$ of density $\alpha:=|\mathcal{F}| /\binom{n}{k}$.
Take a t-matching $\mathcal{M} \subset\binom{[n]}{k}$ uniformly at random.
Define a random variable $\eta:=|\mathcal{M} \cap \mathcal{F}|$. Then $\mathrm{E}[\eta]=\alpha t$.

Theorem (AK, Frankl, 2018+)
For any $\beta>0$, we have $\operatorname{Pr}[|\eta-\alpha t| \geqslant 2 \beta \sqrt{t}] \leqslant 2 e^{-\beta^{2} / 2}$.

Proof outline

Assume $\mathcal{M}=\left\{M_{1}, \ldots, M_{t}\right\}$. We have $\eta=\eta_{1}+\ldots+\eta_{t}$, where η_{i} indicates if $M_{i} \in \mathcal{F}$.

Define a martingale X_{0}, \ldots, X_{t}, where $X_{i}:=\mathrm{E}\left[\eta \mid \eta_{i}, \ldots, \eta_{1}\right]$.
Note that $X_{0}=\mathrm{E}\left[X_{0}\right]$ and $X_{t}=\eta$.
Assume $\left|X_{i}-X_{i-1}\right| \leqslant 2$ for any i.
Azuma-Hoeffding inequality $(1963,1967)$
If X_{0}, \ldots, X_{t} is a martingale and $\left|X_{i}-X_{i-1}\right| \leqslant 2$ for any $i \in[t]$, then $\operatorname{Pr}\left[\left|X_{t}-X_{0}\right| \geqslant 2 \beta \sqrt{t}\right] \leqslant 2 e^{-\beta^{2} / 2}$

Proof outline

Assume $\mathcal{M}=\left\{M_{1}, \ldots, M_{t}\right\}$. We have $\eta=\eta_{1}+\ldots+\eta_{t}$, where η_{i} indicates if $M_{i} \in \mathcal{F}$.

Define a martingale X_{0}, \ldots, X_{t}, where $X_{i}:=\mathrm{E}\left[\eta \mid \eta_{i}, \ldots, \eta_{1}\right]$.
Note that $X_{0}=\mathrm{E}\left[X_{0}\right]$ and $X_{t}=\eta$.
Assume $\left|X_{i}-X_{i-1}\right| \leqslant 2$ for any i.
Azuma-Hoeffding inequality $(1963,1967)$
If X_{0}, \ldots, X_{t} is a martingale and $\left|X_{i}-X_{i-1}\right| \leqslant 2$ for any $i \in[t]$, then $\operatorname{Pr}\left[\left|X_{t}-X_{0}\right| \geqslant 2 \beta \sqrt{t}\right] \leqslant 2 e^{-\beta^{2} / 2}$.

Proof outline

Assume $\mathcal{M}=\left\{M_{1}, \ldots, M_{t}\right\}$. We have $\eta=\eta_{1}+\ldots+\eta_{t}$, where η_{i} indicates if $M_{i} \in \mathcal{F}$.

Define a martingale X_{0}, \ldots, X_{t}, where $X_{i}:=\mathrm{E}\left[\eta \mid \eta_{i}, \ldots, \eta_{1}\right]$.
Note that $X_{0}=\mathrm{E}\left[X_{0}\right]$ and $X_{t}=\eta$.
Assume $\left|X_{i}-X_{i-1}\right| \leqslant 2$ for any i. Why?

Azuma-Hoeffding inequality $(1963,1967)$
If X_{0}, \ldots, X_{t} is a martingale and $\left|X_{i}-X_{i-1}\right| \leqslant 2$ for any $i \in[t]$, then $\operatorname{Pr}\left[\left|X_{t}-X_{0}\right| \geqslant 2 \beta \sqrt{t}\right] \leqslant 2 e^{-\beta^{2} / 2}$.

Proof of $\left|X_{i}-X_{i-1}\right| \leqslant 2$ for any i

$Y_{i-1}:=\mathrm{E}\left[\eta \mid M_{1}, \ldots, M_{i-1}\right] \quad$ and $\quad Y_{i}:=\mathrm{E}\left[\eta \mid \eta_{i}, M_{1}, \ldots, M_{i-1}\right]$.
It is sufficient to show $\left|Y_{i}-Y_{i-1}\right| \leqslant 2$.
Fix M_{1}, \ldots, M_{i-1}, put $S:=[n] \backslash\left(\cup_{j=1}^{i-1} M_{j}\right)$ and consider $\mathcal{F}^{\prime}:=\mathcal{F} \cap\binom{S}{k}$.
Kneser graph $K G_{S, k}$: vertices - $\binom{S}{k}$, edges - pairwise disjoint sets.
$\mathcal{F}^{\prime} \subset\binom{S}{k}$ gives an induced subgraph of $K G_{S, k}$.

Denote $\quad \alpha^{\prime}:=\left|\mathcal{F}^{\prime}\right| /\binom{|S|}{k}, \quad e\left(\mathcal{F}^{\prime}\right)$: proportion of edges of $K G_{S, k}$ contained inside the subgraph induced on \mathcal{F}^{\prime}.

Proof of $\left|X_{i}-X_{i-1}\right| \leqslant 2$ for any i

$Y_{i-1}:=\mathrm{E}\left[\eta \mid M_{1}, \ldots, M_{i-1}\right] \quad$ and $\quad Y_{i}:=\mathrm{E}\left[\eta \mid \eta_{i}, M_{1}, \ldots, M_{i-1}\right]$.
It is sufficient to show $\left|Y_{i}-Y_{i-1}\right| \leqslant 2$.
Fix M_{1}, \ldots, M_{i-1}, put $S:=[n] \backslash\left(\cup_{j=1}^{i-1} M_{j}\right)$ and consider $\mathcal{F}^{\prime}:=\mathcal{F} \cap\binom{S}{k}$.
Kneser graph $K G_{S, k}$: vertices - $\binom{S}{k}$, edges - pairwise disjoint sets.
$\mathcal{F}^{\prime} \subset\binom{S}{k}$ gives an induced subgraph of $K G_{S, k}$.

Denote $\quad \alpha^{\prime}:=\left|\mathcal{F}^{\prime}\right| /\binom{|S|}{k}, \quad e\left(\mathcal{F}^{\prime}\right)$: proportion of edges of $K G_{S, k}$ contained inside the subgraph induced on \mathcal{F}^{\prime}.
$Y_{i-1}:=\mathrm{E}\left[\eta \mid M_{1}, \ldots, M_{i-1}\right] \quad$ and $\quad Y_{i}:=\mathrm{E}\left[\eta \mid \eta_{i}, M_{1}, \ldots, M_{i-1}\right]$.
$\frac{Y_{i-1}}{t-i+1}=\alpha^{\prime} \quad\left(\right.$ "the density of $\mathcal{F}^{\prime \prime}$ ")
Y_{i} : random variable with two values.
If $\eta_{i}=1$, then $\quad \frac{Y_{i}-1}{t-i}=\frac{2 e\left(\mathcal{F}^{\prime}\right)}{\alpha^{\prime}} \quad$ ("the average degree of $\mathcal{F}^{\prime \prime}$ ")
λ^{\prime} : the second largest absolute value of an eigenvalue of $K G_{S, k}$.
We use the Alon-Chung bound:

$$
\left|\frac{2 e\left(\mathcal{F}^{\prime}\right)}{\alpha^{\prime}}-\alpha^{\prime}\right| \leqslant \frac{\lambda\left(1-\alpha^{\prime}\right)}{d} .
$$

In Kneser graphs: $\frac{\lambda}{d}=\frac{1}{t-i}$. Therefore,

$$
\left|Y_{i}-Y_{i-1}\right| \leqslant 2
$$

Similar for $\eta_{i}=0$
$Y_{i-1}:=\mathrm{E}\left[\eta \mid M_{1}, \ldots, M_{i-1}\right] \quad$ and $\quad Y_{i}:=\mathrm{E}\left[\eta \mid \eta_{i}, M_{1}, \ldots, M_{i-1}\right]$.
$\frac{Y_{i-1}}{t-i+1}=\alpha^{\prime} \quad$ ("the density of $\mathcal{F}^{\prime \prime \prime}$)
Y_{i} : random variable with two values.
If $\eta_{i}=1$, then $\quad \frac{Y_{i}-1}{t-i}=\frac{2 e\left(\mathcal{F}^{\prime}\right)}{\alpha^{\prime}} \quad$ ("the average degree of $\mathcal{F}^{\prime \prime}$)
λ^{\prime} : the second largest absolute value of an eigenvalue of $K G_{S, k}$.
We use the Alon-Chung bound:

$$
\left|\frac{2 e\left(\mathcal{F}^{\prime}\right)}{\alpha^{\prime}}-\alpha^{\prime}\right| \leqslant \frac{\lambda\left(1-\alpha^{\prime}\right)}{d} .
$$

In Kneser graphs: $\frac{\lambda}{d}=\frac{1}{t-i}$. Therefore,

$$
\left|Y_{i}-Y_{i-1}\right| \leqslant 2
$$

Similar for $\eta_{i}=0$

Theorem (AK, Frankl, 2018+)

There exists s_{0} such that the following holds. Fix $s \geqslant s_{0}, k$ and $n \geqslant \frac{5}{3} s k-\frac{2}{3} s$. Then any family $\mathcal{F} \subset\binom{[n]}{k}$ with $\nu(\mathcal{F})<s$ satisfies

$$
|\mathcal{F}| \leqslant\binom{ n}{k}-\binom{n-s+1}{k} .
$$

Theorem (AK, Frankl, 2018+)
Take $k, t \in \mathbb{N}$ and $n=k t$. Fix $\mathcal{F} \subset\binom{[n]}{k}$ of density α. For any $\beta>0$ the random variable $\eta:=|\mathcal{M} \cap \mathcal{F}|$, where \mathcal{M} is randomly chosen t-matching, satisfies

$$
\operatorname{Pr}[|\eta-\alpha t| \geqslant 2 \beta \sqrt{t}] \leqslant 2 e^{-\beta^{2} / 2}
$$

