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Abstract

The dimension of a graph G is the smallest d for which it can be embedded in Rd
as a unit distance graph. Answering a question of Erdős and Simonovits, we show
that any graph with less than

(
d+2
2

)
edges has dimension at most d. Improving their

result, we also prove that the dimension of a graph with maximum degree d is at
most d.
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1 Introduction

Definition 1.1 A graph G = (V,E) is a unit distance graph in Rd, if V ⊂ Rd

and
E ⊆ {(x, y) : x, y ∈ V, |x− y| = 1} .

Note that we do not require the edge set of a unit distance graph to contain
all unit-distance pairs.

We say that a graph G is realizable in a subset X of Rd, if there exists a
unit distance graph G′ in Rd on a set of vertices X0 ⊂ X, which is isomorphic
to G. We will use this notion for X = Rd and for X = 1√

2
Sd−1, where 1√

2
Sd−1

is a sphere of radius 1/
√

2 with center in the origin.

In the paper [3], Erdős, Harary and Tutte introduced the concept of the
Euclidean dimension dimG of a graph G.

Definition 1.2 The Euclidean dimension dimG (spherical dimension dimS G)
of a graph G is equal to k, if k is the smallest integer such that G is realizable
in Rk (on 1√

2
Sk−1 ⊂ Rk).

They studied the dimension of graphs, e.g, complete graphs, wheels, com-
plete bipartite graphs, cubes. They also study the relation of the dimension
to the chromatic number of the graph and to its girth.

In [4] it was shown that if G has maximum degree d then dimG ≤
dimS G ≤ d+ 2. We prove something stronger.

Theorem 1.3 Let d ≥ 2. Any graph G = (V,E) with maximum degree d− 1
has spherical dimension at most d.

We also prove the following.

Theorem 1.4 Let d ≥ 1 and let G = (V,E) be a graph with maximum degree
d. Then G is a unit distance graph in Rd except if d = 3 and G contains K3,3.

Definition 1.5 Let f(d) denote the least number for which there is a graph
with f(d) edges that is not realizable in Rd.
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There are some natural upper bounds on f(d). Since Kd+2 is not realizable
in Rd, it is clear that f(d) ≤

(
d+2
2

)
. For d = 3 we have f(d) ≤

(
d+2
2

)
−1, because

K3,3 can not be embedded in R3. Speaking of lower bounds House [5] proved
that f(3) = 9, and that K3,3 is the only graph with 9 edges that can not
be realized in R3. Chaffee and Noble [2] showed that f(4) =

(
4+2
2

)
= 15,

and there are only two graphs, K6 and K3,3,1, with 15 edges that can not be
realized in R4 as a unit distance graph.

In [4], Erdős and Simonovits asked if f(d) =
(
d+2
2

)
for d > 3. We confirm

this below.

Theorem 1.6 Let d > 3. Any graph G with less than
(
d+2
2

)
edges can be

embedded in Rd. Moreover, if the graph does not contain Kd+2−K3 or Kd+1,
it can be embedded on 1√

2
Sd−1.

Ramsey-type questions about unit distance graphs have been studied by
Kupavskii, Raigorodskii and Titova in [6] and by Alon and Kupavskii in [1].
In [1] the authors introduced the quantity fD(s), which is the smallest possible
d, such that for any graph G on s vertices either G or its complement G can be
realized as a unit distance graph in Rd, and proved that fD(s) = (1

2
+ o(1))s.

Similarly we define fSD(s) to be the smallest possible d, such that for any
graph G on s vertices either G or its complement G can be realized as a unit
distance graph on 1√

2
Sd−1. We determine the exact value of fSD(s) and give

almost sharp bounds on fD(s).

Theorem 1.7 fSD(s) = d(s+ 1)/2e and d(s− 1)/2e ≤ fD(s) ≤ d(s+ 1)/2e.

2 Maximum degree

In the proofs of the bounded maximum degree results we use the following
lemma of Lovász.

Lemma 2.1 ([7]) Let G = (V,E) be a graph with maximum degree k and
k1, . . . , kα be non-negative integers such that k1 + · · ·+ kα = k − α+ 1. Then
there is a partition V = V1 ∪ · · · ∪ Vα of the vertex set into α parts such that
the maximum degree in G[Vi] is at most ki, i = 1, . . . , α.

We apply this lemma for α = 2, to prove Theorem 1.3.

Proof of Theorem 1.3 The proof is by induction on d. For d = 2 and d = 3
the theorem is easy to verify. Let V = V1 ∪ V2 be a partition as in Lemma 2.1
for k1 = bd−2

2
c, k2 = dd−2

2
e. Then by the induction hypothesis, G[Vi] can be

represented on 1√
2
Ski . Represent G[V1] and G[V2] on the spheres of radius 1√

2



centered at the origin in orthogonal subspaces of dimension k1 + 1 and k2 + 1.
Both spheres are subspheres of 1√

2
Sd. 2

In the proof of Theorem 1.4 we use the following lemma and proposition.
The lemma is a strengthening of a special case of Lemma 2.1.

Lemma 2.2 Let G = (V,E) be a graph with maximum degree d.

If d is even, then there is a partition V = V1 ∪ · · · ∪ Vd/2 such that the
maximum degree of G[Vi] is at most 1 if 1 ≤ i < d/2, the maximum degree
of G[Vd/2] is at most 2, and any v ∈ Vd/2 of degree 2 in G[Vd/2] has exactly 2
neighbours in each Vi.

If d is odd, then there is a partition V = V1 ∪ · · · ∪ V(d−1)/2 such that the
maximum degree of G[Vi] is at most 1 if 1 ≤ i < (d−3)/2, the maximum degree
of G[V(d−3)/2] and G[V(d−1)/2] is at most 2, and any v ∈ V(d−3)/2 of degree 2 in
G[V(d−3)/2] has exactly 2 neighbours in each Vi for i ≤ (d− 3)/2 and exactly 3
neighbours in V(d−1)/2.

The following proposition states that paths and cycles can be embedded on
the sphere of radius 1√

2
in R3 in a sufficiently general position. Note that when

a 4-cycle is embedded on 1√
2
S2, there is always a pair non-adjacent points that

are in opposite positions on the sphere.

Proposition 2.3 Any graph G = (V,E) with maximum degree 2 can be em-
bedded on a sphere of radius 1√

2
in R3 such that the following hold:

(i) For any 3 distinct vertices a, b, c no vertex is at distance 1 from a, b and
c.

(ii) No 4 vertices are on a circle, except for those 4-tuples that are formed by
two opposite-position pairs of two 4-cycles.

In the proof we use ideas from the correction [9] to the paper [8] of Lovsz,
Saks and Schrijver. For a graph G = (V,E) let v1, . . . , vn be an ordering of the
vertices. for each vi choose vectors ui of length 1√

2
independently uniformly at

random in Rd. We modify the vectors ui to obtain a unit distance representa-
tion of G by an orthogonalization process. For each i from 2 to n we project
ui in the orthogonal complement of the subspace spanned by

Li = {uj : j < i and (vivj) ∈ E} .

With this method for every ordering of the vertices we have a probability
distribution on the spherical unit distance representations of G. The distribu-
tions that correspond to different orderings may be different, but the following



is true.

Lemma 2.4 ([9]) For any graph G = (V,E) if G does not contain a complete
bipartite graph on d+1 vertices, the distributions, given by random realizations,
in Rd for any two ordering of the vertices have the same sets of measure zero.

Sketch of proof of Proposition 2.3 G is a disjoint union of paths and
cycles. If we remove a vertex from each 4-cycle, we obtain a graph G′ on the
vertex set V ′ = v1, . . . , vn that does not contain a complete bipartite graph on
4 vertices (that is, it does not contain a 4-cycle). Take a random realization
of G′ as described above, and then add back the removed vertices as follows.
If A was removed from the cycle ABCD with this cyclic order, then embed A
as the point opposite to C. We claim that with probability 1 this realization
satisfies the conditions of the proposition. 2

Proof of Theorem 1.4 For d = 1 and d = 2, the statement is trivial, and
for d = 3, it follows from Proposition 2.3. First we remove vertices of degree
3 in G from V one by one. Let W ⊂ V be the set of removed vertices. Each
w ∈ W has exactly 3 neighbours in V , W is an independent set of G, and the
maximum degree in G[V \W ] is at most 2. Now we represent G[V \W ] on
a 2-sphere of radius 1√

2
as in Proposition 2.3. Finally, we embed the removed

vertices in W one by one as follows. For any circle on the sphere there are
exactly 2 points at distance 1 from the circle. (They are not necessarily on
the sphere.) If w1 ∈ W and w2 ∈ W have different sets of neighbours, then
their neighbours span different circles on the sphere. (This is because if the
set of neighbours of w ∈ W span a circle that contains 4 vertices, then all of
these 4 vertices are from 4-cycles, hence have degree 2 in G[V \W ]. So no 2
vertices in W are joined to 3 vertices on this circle.) Moreover, there are no 3
vertices in W with the same set of neighbours, because G does not have K3,3

as a component.

For d > 3 we consider two cases depending on the parity of d. We only
present the proof for the odd case here, for the even it is similar.

Assume that d is odd. Let V = V1 ∪ · · · ∪ V(d−3)/2 ∪ V(d−1)/2 be a partition
as in Lemma 2.2, and as in Case 1, find an independent set W ⊆ V(d−3)/2 of G
such that each w ∈ W has exactly 2 neighbours in V(d−3)/2 and the maximum
degree in G[V(d−3)/2 \ W ] is at most 1. Then we can embed G[V \ W ] on
(d − 3)/2 circles and a 2-sphere such that the circles and the 2-sphere span
pairwise orthogonal subspaces. Embed each G[Vi] (1 ≤ i < (d − 3)/2) and
G[V(d−3)/2\W ] on circles of radius 1√

2
in orthogonal planes, with no two vertices

opposite, and embed V(d−1)/2 on a 2-sphere as in Proposition 2.3. Note that



the embedded V \W lies on the sphere S of radius 1√
2

with the center in the
origin.

Then we can add the vertices of W one by one to this embedding. Each
w ∈ W has exactly 2 neighbours in each Vi for 1 ≤ i ≤ (d − 3)/2 and 3
neighbours in V(d−1)/2. The set of neighbours N(w) spans an affine subspace
A of dimension d− 1. If A does not pass through the origin, then the 2 points
at distance 1 from N(w) are not on the sphere S. If A passes through the
origin, the 2 points at distance 1 from N(w) lie on the 2-sphere on which
G[V(d−1)/2] is embedded, but since G[V(d−1)/2] is embedded on the 2-sphere
such that no vertex is at the pole of the circle through any 3 vertices, the
2 possible positions for w do not coincide with the position of any vertex in
V \W . Finally, for any w1 ∈ W and w2 ∈ W if N(w1) 6= N(w2), then N(w1)
and N(w2) span different affine subspaces, and there are no 3 vertices in W
with the same neighbours, because the maximum degree of G[V(d−3)/2] is at
most 2. 2

3 Number of edges

A graph G = (V,E) is called k-degenerate if any subgraph of G has a vertex
of degree at most k. The colouring number of G is the least k for which there
exists an ordering v1, v2, . . . , vn of the vertices in which each vertex has less
than k neighbors of smaller index. It is not difficult to see that the colouring
number of G is at most k if and only if it is k-degenerate.

Lemma 3.1 Let d ≥ 2 and x be a vertex of degree at most d − 2 in a graph
G. If G − x can be realized on 1√

2
Sd−1 as a unit distance graph, then G can

also be represented on 1√
2
Sd−1.

Proof. The neighbours of x span a linear subspace of dimension at most d−2,
so there is a great circle from which to choose x. 2

The following corollary also follows from the proof of Proposition 2 in [4].

Corollary 3.2 Any graph with colouring number at most d− 2 has spherical
dimension at most d.

Proof of Theorem 1.6 Let G = (V,E) a graph with less than
(
d+2
2

)
edges.

If G is (d − 2)-degenerate, then by Corollary 3.2 it can be embedded on a
sphere, so we may assume that G is not (d − 2)-degenerate. Let H be a
maximal subgraph of G of minimum degree at least d − 1. For the number
of vertices m of H we have d ≤ m ≤ d + 5, because if m ≥ d + 6, then the



number of edges of H is at least (d+5)(d−1)
2

>
(
d+2
2

)
− 1 if d ≥ 4.

There are 6 possible values of m to consider, m = d, d+ 1, d+ 2, d+ 3, d+
4, d+ 5. The rest of the proof consists of analyzing these cases.

2
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