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A subset F ⊂ 2[n] is called a family .

A family is intersecting, if any two of its sets intersect.

Theorem (Erdős-Ko-Rado, 1961)
Given n > 2k > 0, if a family F of k-subsets of [n] is intersecting, then
|F| 6

(
n−1
k−1

)
.

The bound in theorem is attained on a family of all k-sets containing a
given element.
Families that can be pierced by one element are called trivial.
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Non-trivial intersecting families

Theorem (Hilton-Milner, 1967)
Given n > 2k > 0, if a family F of k-subsets of [n] is intersecting and
non-trivial, then

|F| 6

(
n− 1

k − 1

)
−

(
n− k − 1

k − 1

)
+ 1.

The diversity γ(F) of a family F is the number of sets not containing the most
popular element.

Theorem (Frankl, 1987)
Given n > 2k > 0 and an integer 3 6 i 6 k, if a family F of k-subsets of [n] is
intersecting and γ(F) >

(
n−i−1
n−k−1

)
, then

|F| 6

(
n− 1

k − 1

)
−

(
n− i− 1

k − 1

)
+

(
n− i− 1

n− k − 1

)
.

The bound attained on a family, containing all k-sets containing [2, i+ 1], and
all k-sets containing 1 and intersecting [2, i+ 1].
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Proof ingredients

A pair of families A,B are called cross-intersecting if any set from A
intersects all sets from B.

A lexicographical order (lex) on
(
[n]
k

)
: A is before B iff the minimal

element of A \B is less than the minimal element of B \A.
For 0 6 m 6

(
n
k

)
let L(m, k) be the collection of first m k-sets with

respect to lex.

Theorem (Kruskal 1963, Katona 1968)
Suppose that A ⊂

(
[n]
a

)
,B ⊂

(
[n]
b

)
are cross-intersecting. Then the

families L(|A|, a),L(|B|, b) are also cross-intersecting.

Intersecting family → a pair of cross-intersecting families: the sets
containing 1 and the sets not containing 1. Replace by lex families.

Difficult case: when γ(F) >
(
n−3
k−2

)
.



Proof ingredients

A pair of families A,B are called cross-intersecting if any set from A
intersects all sets from B.

A lexicographical order (lex) on
(
[n]
k

)
: A is before B iff the minimal

element of A \B is less than the minimal element of B \A.
For 0 6 m 6

(
n
k

)
let L(m, k) be the collection of first m k-sets with

respect to lex.

Theorem (Kruskal 1963, Katona 1968)
Suppose that A ⊂

(
[n]
a

)
,B ⊂

(
[n]
b

)
are cross-intersecting. Then the

families L(|A|, a),L(|B|, b) are also cross-intersecting.

Intersecting family → a pair of cross-intersecting families: the sets
containing 1 and the sets not containing 1. Replace by lex families.

Difficult case: when γ(F) >
(
n−3
k−2

)
.



Proof ingredients

A pair of families A,B are called cross-intersecting if any set from A
intersects all sets from B.

A lexicographical order (lex) on
(
[n]
k

)
: A is before B iff the minimal

element of A \B is less than the minimal element of B \A.
For 0 6 m 6

(
n
k

)
let L(m, k) be the collection of first m k-sets with

respect to lex.

Theorem (Kruskal 1963, Katona 1968)
Suppose that A ⊂

(
[n]
a

)
,B ⊂

(
[n]
b

)
are cross-intersecting. Then the

families L(|A|, a),L(|B|, b) are also cross-intersecting.

Intersecting family → a pair of cross-intersecting families: the sets
containing 1 and the sets not containing 1. Replace by lex families.

Difficult case: when γ(F) >
(
n−3
k−2

)
.



Proof ingredients

A pair of families A,B are called cross-intersecting if any set from A
intersects all sets from B.

A lexicographical order (lex) on
(
[n]
k

)
: A is before B iff the minimal

element of A \B is less than the minimal element of B \A.
For 0 6 m 6

(
n
k

)
let L(m, k) be the collection of first m k-sets with

respect to lex.

Theorem (Kruskal 1963, Katona 1968)
Suppose that A ⊂

(
[n]
a

)
,B ⊂

(
[n]
b

)
are cross-intersecting. Then the

families L(|A|, a),L(|B|, b) are also cross-intersecting.

Intersecting family → a pair of cross-intersecting families: the sets
containing 1 and the sets not containing 1. Replace by lex families.

Difficult case: when γ(F) >
(
n−3
k−2

)
.



A stronger version of Frankl’s theorem with a simpler proof:

Theorem (Kupavskii, Zakharov, 2016+)
Given n > 2k > 0 and a real 3 6 u 6 k, if a family F of k-subsets of [n]
is intersecting and γ(F) >

(
n−u−1
n−k−1

)
, then

|F| 6
(
n− 1

k − 1

)
−
(
n− u− 1

k − 1

)
+

(
n− u− 1

n− k − 1

)
.

The main ingredient of the proof is Kruskal-Katona theorem, and an easy
statement that in a regular bipartite graph the largest independent set is
one of its parts.

We modify the family step by step, not decreasing its size and decreasing
its diversity, until we arrive at the family giving equality in the theorem.

A powerful method: allows for a fine-grained analysis of the situation,
provides a unified proof of all statements of this type.
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Number of intersecting families

Theorem (Balogh, Das, Delcourt, Liu, and Sharifzadeh, 2015)
For n > 3k + 8 log k and k →∞, most intersecting families are trivial.

They posed a problem to extend their result for smaller n = n(k).

Theorem (Kupavskii, Frankl, 2017)
For n > 2k + 2 + 2

√
k log k and k →∞, most intersecting families are

trivial, and most non-trivial intersecting families have diversity 1.
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Degree versions
The degree of an element is the number of sets from the family
containing it.

Theorem (Huang, Zhao, 2017)
Let n > 2k+ 1 > 1. Then any intersecting family has minimum degree at
most

(
n−2
k−2

)
.

The proof is based on the application of the eigenvalue methods. They
asked for a purely combinatorial proof of the theorem.

Frankl and Tokushige gave a combinatorial proof for n > 3k.

The degree of a subset S ⊂ [n] is the number of sets from the family
containing S. δt(F) is the minimal degree of an t-subset S ⊂ [n].

Theorem (Kupavskii, 2017+)
If n > 2k + 2 > 2, then for any intersecting family F of k-subsets of [n]
we have δ1(F) 6

(
n−2
k−2

)
. More generally, if n > 2k + 3t

1− t
k

and 1 6 t < k,

then δt(F) 6
(
n−t−1
k−t−1

)
.
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Degree versions for non-trivial families

Theorem (Frankl, Han, Huang, Zhao, 2017+)
Let k > 4 and n > ck2, where c = 30 for k = 4, 5, and c = 4 for k > 6.
Then the minimum degree of any non-trivial intersecting family is at
most

(
n−2
k−2

)
−
(
n−k−2
k−2

)
.

Question: extend this result for n linear in k, or even for n > 2k + 1.

Theorem (Kupavskii, 2017+)
If t = 1, n > 2k + 5, and k > 35, or 1 < t 6 k

4 − 2, n > 2k + 14t, then
for any non-trivial intersecting family F of k-subsets of [n] we have
δt(F) 6

(
n−t−1
k−t−1

)
−
(
n−k−t−1
k−t−1

)
.
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Further questions

Han-Kohayakawa, Mubayi-Kostochka: study of non-trivial families that
are not subfamilies of the Hilton-Milner families.
Their results may be strengthened and generalized using our methods.

What one can say about the structure of the families with diversity bigger
than

(
n−3
k−2

)
?

Conjecture (Frankl)
If n > 3k and F is an intersecting family of k-subsets of [n], then
γ(F) 6

(
n−3
k−2

)
.
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