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Definitions

A subset F C 2" is called a family.

v(F): the maximum number of pairwise disjoint members of F.
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Definitions

v(F): the maximum number of pairwise disjoint members of F.

partition in F: two disjoint sets I, Fp € F, s.t. Fy U Fy, € F.
e(n, s) ==max{|F|: F ¢ 2" y(F) < s}.
er(n,s) ::max{|]—'| : F C ([n]),u(]—') < s}

k

p(n) ==max{|F|: F C 2"l F is partition-free}.



The case s = 2 corresponds to intersecting families.

Theorem (Erdés-Ko-Rado, 1961)

er(n,2) = <n B 1> for n > 2k.



Partitions
For n =3m +1i,i=0,1,2 the family
Kn):={K Cn]:m+1<|K|<2m+1}.
does not contain a partition.

Theorem (Kleitman, 1968)

pem+)=Kml= ¥ (7).

m+1<t<2m+1



Partitions
For n =3m +1i,i=0,1,2 the family
Kn):={K Cn]:m+1<|K|<2m+1}.
does not contain a partition.

Theorem (Kleitman, 1968)

pem+)=Kml= ¥ (7).

m+1<t<2m+1

Conjecture (Kleitman, 1968)
h(n) =|K(n)| for any n.

Theorem 1 (P. Frankl, AK, 2017)
The conjecture is true. Moreover, we know all extremal families.



Matchings. The non-uniform case

For n < sm the family

does not contain s pairwise disjoint sets.

Conjecture (Erdés, 1960's)
For n = sm — 1 B(n,m) is the largest family with matching number < s.

Theorem (Kleitman, 1966)

e(sm—1,5) = |Bn,m)| = 3 (Smtl)

m<t<sm—1

e(sm,s) = (™) + S () (= 2e(sm—1,9).
(") (")

m~+1<t<sm



Matchings. The non-uniform case

Problem (Kleitman, 1966)
Determine e(n, s) for other values of n.

Very little progress over 50 years...

Theorem (Quinn, 1986)

e(3m +1,3) = <mSm 1) + Y <3mt+ 1).

m+1<t<3m+1



Construction

Letn=sm+s—10,0<I<s
P(s,m,l) f{PCZ P+ IPNI—=1]| = m+1}.
v(P(s,m,l)) < s : for disjoint F,...,Fs we have

sm+s—12> Z|F|+\Fﬁ[l—1]\ sm+ s.

i=1



Construction

Letn=sm+s—10,0<I<s

P(s,m,l) f{PCZ P+ IPNI—=1]| = m+1}.

v(P(s,m,l)) < s : for disjoint F,...,Fs we have

sm+s—12> Z|F|+\Fﬂ[l—1]\ sm+ s.

i=1
Theorem 2 (P. Frankl, AK, 2016)
e(sm+s—1,s) =|P(s,m,l)| holds for

() 1=2,
(#) s = Im+ 3l + 3.



Statement for cross-dependent families

Families Fi, ..., Fs are cross-dependent, if there are no pairwise disjoint
FZ' 6]—'1-,2':1,...,8

Theorem 3 (P. Frankl, AK, 2016)
Letn=sm+s—1with1l<!<s.Then

Smcn(t)on 3, )

t>m—+1



Matchings. Proof for n = 3m + 2

Theorem
Any family F c 21" with no three pairwise disjoint sets satisfies

P < 2t ()

Step 1. An auxiliary family 7.

The following sets are included in H:

(1) Three pairwise disjoint m-sets H', H?, H3 C [3m + 2].
(Put {z,y} = [3m + 2] \UH".)

(2) Three maximal chains {0} =: H; C H} C ... C H! = H".
(3) All sets of the type H? U A, where A C {z,y}.



Matchings. Proof for n = 3m + 2

Theorem
Any family F c 2[" with no three pairwise disjoint sets satisfies

|]:| < E?:m+1 (1’7:7,)

Step 2. Weights and averaging.

Assign equal weights w(H) to all H € HN ( : )

for all sets H of size t #m + 1 put w(H) = (}),

for sets U of size . + 1 put w(U) = 5(,.",)-

The sum of weights of all t-element sets in H is equal to 3(7).

Need to prove that 3y w(H) = 357" () for any choice of H.
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HEH\F t=0

Why (1) implies the theorem?



Matchings. Proof for n = 3m + 2

Theorem
Any family F c 2! with no three pairwise disjoint sets satisfies

P < 2t ()

S w(H) >3ij (’Z)

HEH\F t=0

Why (1) implies the theorem?

(]
Take any H € H of size t. We have Pr[H ¢ F| = I ’())\ﬂ

For t < m + 2 we have E[ZHeHm([’Z])\f w(H)} = 3|([Ttl]) \ Fl.
Therefore, by (1) we get

m m—+2

3§ <;L> < E[ 3 w(H)} 3% |<[?]) \F| <32\ .

HEeH\F t=0



Proof of the n = 3m + 2 case

S w(H) >3§: (;‘)

HeH\F t=0
Step 3. Analysis of 7 N H.
F is closed upwards.

Case 1: For each i € [3] H" ¢ F. Then all H} are missing, t =0,...,m.
We are done.



Proof of the n = 3m + 2 case

S w(H) >3§: (7;)

HeH\F t=0
Step 3. Analysis of 7 N H.
F is closed upwards.

Case 1: For each i € [3] H" ¢ F. Then all H} are missing, t = 0,.
We are done.

Case 2: H' H? € F,H? ¢ F. Then H3U {z,y} ¢ F. We have

= s ()£ ()

HEH\F t=0

We use that (/) > (,/1,) > 2(7). and also (,/3,) > 31ty (7).



Proof of the n = 3m + 2 case

m

S wH) =3 (?)

HEeH\F t=0

Case 3: H' € F,H* H* ¢ F.
Then in each pair (H?> U {z}, H* U {y}), (H?> U {y}, H® U {z}) one set is
missing. We get

S w(H) > <mj—1> +2§ (Z‘) >3§ (Z‘)

HEH\F



3 3 2 1/ \z
Him+ (k) Hi’”+ () H:™(4) Hi""l(k)
| N | AN 7 AN o
R e

_—— 1 _ —~—— - - .
Hierz (4’& H;n+2(4, k) Him+2 H77r+—2(57'j) I,Iivrwr2(57 k) H2m

\ /
+7 +k +5 +4 7~ &g +k _-"=5 4
O\ s N -y \

H,}"“(4) H;nﬂ(s) lem+1(5) H2m+L(4)
N\~ /T PN -7
+4\\\\/+5 \\\\ //// 74\////75

Hr Tt T T T H{2m+2
| RN _- |
+i SO BPhe ey
I Seel__ - I
Hlmfl H?nz+3






Matchings. The uniform case

How to construct a large family A C ([Z]), satisfying v(A) < s?

AP, 5) = {A € CZ]) CAN[s—1] £ @}, AR (n, 5) = <[Skk ”).



Matchings. The uniform case

How to construct a large family A C ([Z]), satisfying v(A) < s?
() () g) [y N 9y oy (5% —1]
AP (n,5) ={ae (k) FAN[s=1] A0}, AP (n.s) = ( )

Erd6s Matching Conjecture, 1965
For n > sk we have

ex(n,s) = max{|A (n, s)|, AP (n, s)[}.



Matchings. The uniform case

How to construct a large family A C ([Z]), satisfying v(A) < s?

AP, 5) = {A € CZ]) CAN[s—1] £ @}, AR (n, 5) = <[Skk ”).

Erd6s Matching Conjecture, 1965
For n > sk we have

ex(n,s) = max{|A (n, s)|, AP (n, s)[}.

True for k < 3 (Erdés and Gallai; tuczak and Mieczkowska; Frankl).

ek(n,s+1)(z>(n_z+1) for m> (25— 1k—s (Frankl).
(2)



Stability Results

The covering number 7(H) of a hypergraph is the minimum of |T'| over
all T satisfying TN H # () for all H € H.

Hilton-Milner, 1967
Let n > 2k and F C ([Z]) satisfy v(F) < 2 and 7(F) > 2. Then

n—1 n—k—1
< — .
|F| < (k—l) ( ko1 )+1 holds



Stability Results

The covering number 7(H) of a hypergraph is the minimum of |T'| over
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Theorem 4 (P. Frankl, AK, 2016)
Assume that v(F) < s,7(F) > s. Then the following holds:

n n—s+1 n—s+1-—k
< _ _
A=) - ()T
provided k > 3,n > (2 + o(1)) sk, where o(1) depends on s only.

Known to be true for n > 2k?s: Bollobas, Daykin and Erdés (1976).



Open problems.

Let oy > a2 > ... >, >0bereals, Y, oy <s. Puta=(aq,...,a,).
Fla):={Fe2. Zai > 1}.
i€F
Then v(F(a) < s holds. Also F(a) ={0,1}"N{x € R": (x,a) > 1}.

Conjecture (P. Frankl, AK)

For any n, s the maximum of e(n, s) (or ex(n, s)) is attained on the
family 7 («) for suitable a € R™.



