
Families with forbidden subconfigurations

Andrey Kupavskii

DCG, EPFL

Joint work with Peter Frankl



Definitions
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ν(F): the maximum number of pairwise disjoint members of F .



Definitions

A subset F ⊂ 2[n] is called a family .

ν(F): the maximum number of pairwise disjoint members of F .



Definitions

A subset F ⊂ 2[n] is called a family .

ν(F): the maximum number of pairwise disjoint members of F .



Definitions

A subset F ⊂ 2[n] is called a family .

ν(F): the maximum number of pairwise disjoint members of F .



Definitions

A subset F ⊂ 2[n] is called a family .

ν(F): the maximum number of pairwise disjoint members of F .



Definitions

A subset F ⊂ 2[n] is called a family .

ν(F): the maximum number of pairwise disjoint members of F .



Definitions

A subset F ⊂ 2[n] is called a family .

ν(F): the maximum number of pairwise disjoint members of F .



Definitions

ν(F): the maximum number of pairwise disjoint members of F .

partition in F : two disjoint sets F1, F2 ∈ F , s.t. F1 ∪ F2 ∈ F .

e(n, s) :=max
{
|F| : F ⊂ 2[n], ν(F) < s

}
.

ek(n, s) :=max
{
|F| : F ⊂

(
[n]

k

)
, ν(F) < s

}
.

p(n) :=max
{
|F| : F ⊂ 2[n],F is partition-free}.



The case s = 2 corresponds to intersecting families.

Theorem (Erdős-Ko-Rado, 1961)

e(n, 2) = 2n−1.

ek(n, 2) =

(
n− 1

k − 1

)
for n > 2k.



Partitions

For n = 3m+ i, i = 0, 1, 2 the family

K(n) := {K ⊂ [n] : m+ 1 6 |K| 6 2m+ 1}.

does not contain a partition.

Theorem (Kleitman, 1968)

h(3m+ 1) = |K(n)| =
∑

m+16t62m+1

(
n

t

)
.

Conjecture (Kleitman, 1968)

h(n) = |K(n)| for any n.

Theorem 1 (P. Frankl, AK, 2017)
The conjecture is true. Moreover, we know all extremal families.
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Matchings. The non-uniform case
For n < sm the family

B(n,m) :=

(
[n]

> m

)
:= {H ⊂ [n] : |H| > m}

does not contain s pairwise disjoint sets.

Conjecture (Erdős, 1960’s)
For n = sm− 1 B(n,m) is the largest family with matching number < s.

Theorem (Kleitman, 1966)

e(sm− 1, s) = |B(n,m)| =
∑

m6t6sm−1

(
sm− 1

t

)
,

e(sm, s) =

(
sm− 1

m

)
+

∑
m+16t6sm

(
sm

t

)
(= 2e(sm− 1, s)).



Matchings. The non-uniform case

Problem (Kleitman, 1966)
Determine e(n, s) for other values of n.

Very little progress over 50 years...

Theorem (Quinn, 1986)

e(3m+ 1, 3) =

(
3m

m− 1

)
+

∑
m+16t63m+1

(
3m+ 1

t

)
.



Construction

Let n = sm+ s− l, 0 < l 6 s.

P(s,m, l) :=
{
P ⊂ 2[n] : |P |+ |P ∩ [l − 1]| > m+ 1

}
.

ν(P(s,m, l)) < s : for disjoint F1, . . . , Fs we have

sm+ s− 1 >
s∑

i=1

|Fi|+ |Fi ∩ [l − 1]| > sm+ s.

Theorem 2 (P. Frankl, AK, 2016)
e(sm+ s− l, s) = |P(s,m, l)| holds for

(i) l = 2,

(ii) s > lm+ 3l + 3.
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Statement for cross-dependent families

Families F1, . . . ,Fs are cross-dependent, if there are no pairwise disjoint
Fi ∈ Fi, i = 1, . . . , s.

Theorem 3 (P. Frankl, AK, 2016)
Let n = sm+ s− l with 1 6 l 6 s. Then

s∑
i=1

|Fi| 6 (l − 1)

(
n

m

)
+ s

∑
t>m+1

(
n

t

)
.



Matchings. Proof for n = 3m+ 2

Theorem
Any family F ⊂ 2[n] with no three pairwise disjoint sets satisfies
|F| 6

∑n
t=m+1

(
n
m

)
.

Step 1. An auxiliary family H.

The following sets are included in H:

(1) Three pairwise disjoint m-sets H1, H2, H3 ⊂ [3m+ 2].

(Put {x, y} := [3m+ 2] \ ∪Hi.)

(2) Three maximal chains {∅} =: Hi
0 ⊂ Hi

1 ⊂ . . . ⊂ Hi
m := Hi.

(3) All sets of the type Hi ∪A, where A ⊂ {x, y}.



Matchings. Proof for n = 3m+ 2

Theorem
Any family F ⊂ 2[n] with no three pairwise disjoint sets satisfies
|F| 6

∑n
t=m+1

(
n
m

)
.

Step 2. Weights and averaging.

Assign equal weights w(H) to all H ∈ H ∩
(
[n]
t

)
:

for all sets H of size t 6= m+ 1 put w(H) =
(
n
t

)
,

for sets U of size m+ 1 put w(U) = 1
2

(
n

m+1

)
.

The sum of weights of all t-element sets in H is equal to 3
(
n
t

)
.

Need to prove that
∑

H∈H\F w(H) > 3
∑m

t=0

(
n
t

)
for any choice of H.



Matchings. Proof for n = 3m+ 2

Theorem
Any family F ⊂ 2[n] with no three pairwise disjoint sets satisfies
|F| 6

∑n
t=m+1

(
n
m

)
.

∑
H∈H\F

w(H) > 3

m∑
t=0

(
n

t

)
. (1)

Why (1) implies the theorem?

Take any H ∈ H of size t. We have Pr[H /∈ F ] = |([n]
t )\F|
(nt)

.

For t 6 m+ 2 we have E
[∑

H∈H∩([n]
t )\F

w(H)
]
= 3|

(
[n]
t

)
\ F|.

Therefore, by (1) we get

3

m∑
t=0

(
n

t

)
6 E

[ ∑
H∈H\F

w(H)
]
= 3

m+2∑
t=0

∣∣([n]
t

)
\ F
∣∣ 6 3|2[n] \ F|.
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Proof of the n = 3m+ 2 case

∑
H∈H\F

w(H) > 3

m∑
t=0

(
n

t

)
.

Step 3. Analysis of F ∩H.

F is closed upwards.

Case 1: For each i ∈ [3] Hi /∈ F . Then all Hi
t are missing, t = 0, . . . ,m.

We are done.

Case 2: H1, H2 ∈ F , H3 /∈ F . Then H3 ∪ {x, y} /∈ F . We have

∑
H∈H\F

w(H) >
m+2∑
t=0

(
n

t

)
> 3

m∑
t=0

(
n

t

)
.

We use that
(

n
m+2

)
>
(

n
m+1

)
> 2
(
n
m

)
, and also

(
n

m+1

)
>
∑m

t=0

(
n
t

)
.
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Proof of the n = 3m+ 2 case

∑
H∈H\F

w(H) > 3

m∑
t=0

(
n

t

)
.

Case 3: H1 ∈ F , H2, H3 /∈ F .
Then in each pair (H2 ∪ {x}, H3 ∪ {y}), (H2 ∪ {y}, H3 ∪ {x}) one set is
missing. We get

∑
H∈H\F

w(H) >

(
n

m+ 1

)
+ 2

m∑
t=0

(
n

t

)
> 3

m∑
t=0

(
n

t

)
.
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Matchings. The uniform case

How to construct a large family A ⊂
(
[n]
k

)
, satisfying ν(A) < s?

A(k)
1 (n, s) :=

{
A ∈

(
[n]

k

)
: A∩ [s− 1] 6= ∅

}
, A(k)

k (n, s) :=

(
[sk − 1]

k

)
.

Erdős Matching Conjecture, 1965
For n > sk we have

ek(n, s) = max
{
|A(k)

1 (n, s)|, |A(k)
k (n, s)|

}
.

True for k 6 3 (Erdős and Gallai;  Luczak and Mieczkowska; Frankl).

ek(n, s+1) =

(
n

k

)
−
(
n− s+ 1

k

)
for n > (2s− 1)k − s (Frankl).

(2)
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Stability Results
The covering number τ(H) of a hypergraph is the minimum of |T | over
all T satisfying T ∩H 6= ∅ for all H ∈ H.

Hilton-Milner, 1967
Let n > 2k and F ⊂

(
[n]
k

)
satisfy ν(F) < 2 and τ(F) > 2. Then

|F| 6
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1 holds.

Theorem 4 (P. Frankl, AK, 2016)
Assume that ν(F) < s, τ(F) > s. Then the following holds:

|F| 6
(
n

k

)
−
(
n− s+ 1

k

)
−
(
n− s+ 1− k

k − 1

)
+ 1,

provided k > 3, n >
(
2 + o(1)

)
sk, where o(1) depends on s only.

Known to be true for n > 2k3s: Bollobás, Daykin and Erdős (1976).
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Open problems.

Let α1 > α2 > . . . > αn > 0 be reals,
∑

i αi < s. Put ααα = (α1, . . . , αn).

F(ααα) := {F ∈ 2[n] :
∑
i∈F

αi > 1}.

Then ν(F(ααα) < s holds. Also F(ααα) = {0, 1}n ∩ {x ∈ Rn : 〈x,ααα〉 > 1}.

Conjecture (P. Frankl, AK)
For any n, s the maximum of e(n, s) (or ek(n, s)) is attained on the
family F(ααα) for suitable ααα ∈ Rn.


