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Partitions

A subset F C 20" is called a family.

A partition in F: two disjoint sets F}, F5 € F, such that
FLUFl, e F.

p(n) == max{|F|: F C ol"l Fis partition-free}.



Partitions

Forn=3m+1i, i=0,1,2, the family
Kn):={K C[n]:m+1<|K|<2m+1}
does not contain a partition.

Theorem (Kleitman, 1968)
n
1) = 7 1)| = .
p(3m+1) = [K(3m + 1) E (t)

m—+1<t<2m+1



Partitions

Forn=3m+1i, i=0,1,2, the family
Kn):={K C[n]:m+1<|K|<2m+1}
does not contain a partition.

Theorem (Kleitman, 1968)
n
1) = 7 1)| = .
p(3m+1) = [K(3m + 1) E (t)

m—+1<t<2m+1

Kleitman conjectured that p(n) = |K(n)| for any n.

Theorem 1 (P. Frankl, AK, 2017)
The conjecture is true. Moreover, we know all extremal families.



Matchings

The matching number v(F): the maximum number

of pairwise disjoint members of F.

e(n, s) ==max{|F|: F C olnl w(F) < s}

ex(n, 5) ::max{|f| L FC ([Z]) V(F) < 5}



Matchings

The case s = 2 corresponds to intersecting families.

Theorem (Erd&s-Ko-Rado, 1938-1961)

e(n,2) = 2" 1,
n—1
er(n,2) = (k—l) for n

WV

2k.



Matchings. The non-uniform case

For n < sm the family

[n

Bl i= () = 001 < ol 111> m)

=m

does not contain s pairwise disjoint sets.

Conjecture (Erdés, 1960's)

Forn =sm —1 we have  e(n,s) =|B(n,m)|.
Theorem (Kleitman, 1966)

e(sm—1,s) = |B(n,m)],

e(sm, s) :<5mm1>+ 3 @”) (= 2e(sm — 1, 5)).

m+1<t<sm



Matchings. The non-uniform case

Problem (Kleitman, 1966)
Determine e(n, s) for other values of n.

Very little progress over 50 years...

Theorem (Quinn, 1987)

e(3m+1,3) = (;’TJ + Y <3mt+ 1).

m+1<t<3m+1

Unfortunately, it was not published in a refereed journal.



Construction

Lletn=sm+s—10,0<I<s

P(s,m, 1) :={P c2 |P|+|PN[l—1]| >m+1}.
v(P(s,m,l)) <s: for disjoint  Fi,...,Fs we have
sm+s—12> Z|F|+\Fﬂ[l—1]\ sm+ s.

i=1



Construction

Lletn=sm+s—10,0<I<s

P(s,m, 1) :={P c2 |P|+|PN[l—1]| >m+1}.

v(P(s,m,l)) <s: for disjoint  Fi,...,Fs we have

sm+s—12> Z|F|+\Fﬁ[l—1]\ sm+ s.

i=1

Theorem 2 (P. Frankl, AK, 2016)
e(sm+s—1,8) =|P(s,m,l)| holds for

(2) 1 =2,

(1) s > Im + 30 + 3.



Remark. Cross-dependent families

Families F1, ..., Fs are cross-dependent,

if there are no pairwise disjoint F; € F;, i € [s].

Theorem 3 (P. Frankl, AK, 2016)
Let n=sm+s—1withl<l<s. Then

Smeca(t)on 3, )

t>m—+1

This is tight: take Fi=...=F 1= (>[7;11)

and F=...=F,= (>%L1)



Matchings. Proof for n = 3m + 2

Theorem
Put n = 3m + 2. Any family F c 2[" with no three pairwise disjoint sets

satisfies n
n
< .
1< > (1)

t=m+1

Step 1. An auxiliary family 7. It consists of:
(a) Three pairwise disjoint m-sets H'H?* H? C [3m +2].
(Put {z,y} := [3m + 2] \ UH".)

(b) Three maximal chains {§} =: H, C H{ C ... C H]

m

= H*,

(c) All sets of the type H'U A, where A C {z,y}.



Matchings. Proof for n = 3m + 2

Theorem
Put n = 3m + 2. Any family F C 2" with no three pairwise disjoint sets

satisfies ,
n
A< 3 ()

t=m-+1

Step 2. Weights and averaging. The weights are as follows:

(a) Each set H € H of size t # m + 1 gets weight w(H) = (7).

(b) Each set U € H of size m + 1 gets weight w(U) = %(mﬁd)

The sum of weights of all t-sets in # is equal to 3(").



Matchings. Proof for n = 3m + 2

Theorem
Put n = 3m + 2. Any family F C 2" with no three pairwise disjoint sets

satisfies ,
n
A< 3 ()

t=m-+1

Step 2. Weights and averaging. The weights are as follows:
(a) Each set H € H of size t # m + 1 gets weight w(H) = (7).

(b) Each set U € H of size m + 1 gets weight w(U) = %(mﬁrl)

The sum of weights of all t-sets in # is equal to 3(").

Need to prove that 3y »w(H) = 3351 () for any choice of H.



Matchings. Proof for n = 3m + 2

Theorem
Put n = 3m + 2. Any family F C 2[" with no three pairwise disjoint sets
satisfies |FI <> ] (m)

> ) > 32 (7). 1

HEeH\F

Why (1) implies the theorem?  Choose H “at random".



Matchings. Proof for n = 3m + 2

Put n = 3m + 2. Any family F C 2" with no three pairwise disjoint sets
satisfies |FI < 3 ().

> ) > ?é (7). 1

HEH\F
Why (1) implies the theorem?  Choose H “at random".
(GDVFL
B

For t <m+2 we have E[ZHeHm([’g])\}‘w(H)] = 3‘([7;]) \ F.

For any H € H of size ¢ Pr[H ¢ F| =

Therefore, by (1) we get

32 (7;) <E[ 3 w(H)] =3mz+:2|<[ ]) \ F| <3121\ Fl.

t=0 HeH\F t=0



Proof of the n = 3m + 2 case

Need to prove Z w(H) > 32 (?)

HeH\F t=0
Step 3. Analysis of 7 N #H.
We can assume that F is closed upwards.

Case 1: Foreach i e [3] H' ¢ F. Then all H} are missing,
t=0,...,m. We are done.



Proof of the n = 3m + 2 case

Need to prove Z w(H) > 32 (?)

HeH\F t=0
Step 3. Analysis of 7 N #H.
We can assume that F is closed upwards.

Case 1: Foreach i e [3] H' ¢ F. Then all H} are missing,
t=0,...,m. We are done.

Case2: H',H? € F,H?> ¢ F. Then H*U {z,y} ¢ F. We have

S wH) > Wf (Tt‘>> 3; (;L)

HeH\F t=0

We use that ("1 ,) = (/1) > 2oimo (1)



Proof of the n = 3m + 2 case

> win =33 (7).

HeH\F t=0

Case 3: H' € F,H? H® ¢ F. Then in each pair
(H? U {z}, H® U {y}), (H?U {y}, H® U {a})

one set is missing. We get

S w(H) > (mil) +2Zm:(7;>> SZ (7)

t=0 t=0
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Matchings. The uniform case

How to construct a large family A C ([Z]), satisfying v(A) < s?

AR (n, 5) = {A € CZ]) CAN[s—1] @}, AF (n, 5) = <[Skk_ ”).
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Erdés Matching Conjecture, 1965
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Matchings. The uniform case

How to construct a large family A C ([Z]), satisfying v(A) < s?
(F) () ) ]y B o ([sk—1]
AP (n, ) = {Ae (k) AN s 1]74@}, AP () ._< L)

Erdés Matching Conjecture, 1965
For n > sk we have

er(n,s) = max{|A§k)(n, s)l, \Agck) (n,s)]}.

True for k < 3 (Erd8s and Gallai; Luczak and Mieczkowska; Frankl).

ex(n,s+1) = (Z) - (n _Z + 1) for  n>=(2s—1)k—s (Frankl).



Stability Results

The covering number 7(H) of a family is the minimum of |7’|
over all T satisfying TN H # () for all H € H.

Hilton-Milner, 1967
Let n > 2k and F C ([Z]) satisfy v(F) < 2 and 7(F) > 2. Then

n—1 n—k—1
< —
|F| < (kl) ( R )+1 holds.



Stability Results

Theorem 4 (P. Frankl, AK, 2016)
Assume that v(F) < s, 7(F) = s. Then the following holds:

n n—s+1 n—s+1-—k
< - - 17
provided k>3, n > (24 o(1))sk, where o(1) depends on s only.

Known to be true for n > 2k%s: Bollobas, Daykin and Erdés (1976).

Implications for other problems: anti-Ramsey type questions,

non-uniform families with no large matchings, degree versions.



Open problems.

Let a1 >...>a, >0 bereals, >, a;, <s. Put a=(ai,...,a,).
Fla):={F e2 . Z(}, > 1}
icF
Then v(F(a) < s holds. Also F(a) = {0,1}"N{x € R": (x,a) > 1}.

Conjecture (P. Frankl, AK, 2016)

For any n, s the maximum of e(n,s) (or ex(n,s)) is attained on the
family 7 («) for suitable @ € R™.

Non-uniform case:
Maximum size of families without certain structures involving disjoint
sets (e.g., r-partition free families, introduced by Frankl in 1977).



