Families with forbidden subconfigurations

Andrey Kupavskii

EPFL and MIPT

Joint work with Peter Frankl

Partitions

A subset $\mathcal{F} \subset 2^{[n]}$ is called a family.

A partition in \mathcal{F} : two disjoint sets $F_{1}, F_{2} \in \mathcal{F}$, such that

$$
F_{1} \cup F_{2} \in \mathcal{F} .
$$

$$
p(n):=\max \left\{|\mathcal{F}|: \mathcal{F} \subset 2^{[n]}, \mathcal{F} \text { is partition-free }\right\} .
$$

Partitions

For $n=3 m+i, \quad i=0,1,2$, the family

$$
\mathcal{K}(n):=\{K \subset[n]: m+1 \leqslant|K| \leqslant 2 m+1\}
$$

does not contain a partition.
Theorem (Kleitman, 1968)

$$
p(3 m+1)=|\mathcal{K}(3 m+1)|=\sum_{m+1 \leqslant t \leqslant 2 m+1}\binom{n}{t} .
$$

$$
p(n)=|\mathcal{K}(n)|
$$

for any n.
Theorem 1 (P. Frankl, AK, 2017)
The conjecture is true. Moreover, we know all extremal families.

Partitions

For $n=3 m+i, \quad i=0,1,2, \quad$ the family

$$
\mathcal{K}(n):=\{K \subset[n]: m+1 \leqslant|K| \leqslant 2 m+1\}
$$

does not contain a partition.
Theorem (Kleitman, 1968)

$$
p(3 m+1)=|\mathcal{K}(3 m+1)|=\sum_{m+1 \leqslant t \leqslant 2 m+1}\binom{n}{t}
$$

Kleitman conjectured that

$$
\begin{aligned}
& p(n) \\
& 017)
\end{aligned}
$$

The conjecture is true. Moreover, we know all extremal families.

Matchings

The matching number $\nu(\mathcal{F})$: the maximum number of pairwise disjoint members of \mathcal{F}.

$$
\begin{aligned}
e(n, s) & :=\max \left\{|\mathcal{F}|: \mathcal{F} \subset 2^{[n]}, \quad \nu(\mathcal{F})<s\right\} . \\
e_{k}(n, s) & :=\max \left\{|\mathcal{F}|: \mathcal{F} \subset\binom{[n]}{k}, \nu(\mathcal{F})<s\right\} .
\end{aligned}
$$

Matchings

The case $s=2$ corresponds to intersecting families.
Theorem (Erdős-Ko-Rado, 1938-1961)

$$
\begin{aligned}
e(n, 2) & =2^{n-1} \\
e_{k}(n, 2) & =\binom{n-1}{k-1} \quad \text { for } \quad n \geqslant 2 k .
\end{aligned}
$$

Matchings. The non-uniform case

For $n<s m$ the family

$$
\mathcal{B}(n, m):=\binom{[n]}{\geqslant m}:=\{H \subset[n]:|H| \geqslant m\}
$$

does not contain s pairwise disjoint sets.
Conjecture (Erdős, 1960's)

$$
\text { For } n=s m-1 \text { we have } \quad e(n, s)=|\mathcal{B}(n, m)| \text {. }
$$

Theorem (Kleitman, 1966)

$$
\begin{aligned}
& e(s m-1, s)=|\mathcal{B}(n, m)|, \\
& e(s m, s) \quad=\binom{s m-1}{m}+\sum_{m+1 \leqslant t \leqslant s m}\binom{s m}{t} \quad(=2 e(s m-1, s)) .
\end{aligned}
$$

Matchings. The non-uniform case

Problem (Kleitman, 1966)
Determine $e(n, s)$ for other values of n.

Very little progress over 50 years...
Theorem (Quinn, 1987)

$$
e(3 m+1,3)=\binom{3 m}{m-1}+\sum_{m+1 \leqslant t \leqslant 3 m+1}\binom{3 m+1}{t} .
$$

Unfortunately, it was not published in a refereed journal.

Construction

Let $n=s m+s-l, 0<l \leqslant s$.

$$
\mathcal{P}(s, m, l):=\left\{P \subset 2^{[n]}:|P|+|P \cap[l-1]| \geqslant m+1\right\} .
$$

$\nu(\mathcal{P}(s, m, l))<s: \quad$ for disjoint $\quad F_{1}, \ldots, F_{s} \quad$ we have

$$
s m+s-1 \geqslant \sum_{i=1}^{s}\left|F_{i}\right|+\left|F_{i} \cap[l-1]\right| \geqslant s m+s
$$

Theorem 2 (P. Frankl, AK, 2016)
$e(s m+s-l, s)=|\mathcal{P}(s, m, l)|$ holds for

$$
\text { (2) } l=2
$$

$$
\text { (1) } s \geqslant l m+3 l+3
$$

Construction

Let $n=s m+s-l, 0<l \leqslant s$.

$$
\mathcal{P}(s, m, l):=\left\{P \subset 2^{[n]}:|P|+|P \cap[l-1]| \geqslant m+1\right\} .
$$

$\nu(\mathcal{P}(s, m, l))<s: \quad$ for disjoint $\quad F_{1}, \ldots, F_{s}$ we have

$$
s m+s-1 \geqslant \sum_{i=1}^{s}\left|F_{i}\right|+\left|F_{i} \cap[l-1]\right| \geqslant s m+s .
$$

Theorem 2 (P. Frankl, AK, 2016)
$e(s m+s-l, s)=|\mathcal{P}(s, m, l)|$ holds for

$$
\text { (2) } l=2 \text {, }
$$

(1) $s \geqslant l m+3 l+3$.

Remark. Cross-dependent families

Families $\mathcal{F}_{1}, \ldots, \mathcal{F}_{s}$ are cross-dependent,

$$
\text { if there are no pairwise disjoint } F_{i} \in \mathcal{F}_{i}, i \in[s] .
$$

Theorem 3 (P. Frankl, AK, 2016)
Let $n=s m+s-l$ with $1 \leqslant l \leqslant s$. Then

$$
\sum_{i=1}^{s}\left|\mathcal{F}_{i}\right| \leqslant(l-1)\binom{n}{m}+s \sum_{t \geqslant m+1}\binom{n}{t} .
$$

This is tight: take $\mathcal{F}_{1}=\ldots=\mathcal{F}_{l-1}=\binom{[n]}{\geqslant m}$

$$
\text { and } \quad \mathcal{F}_{l}=\ldots=\mathcal{F}_{s}=(\underset{m+1}{[n]}) \text {. }
$$

Matchings. Proof for $n=3 m+2$

Theorem

Put $n=3 m+2$. Any family $\mathcal{F} \subset 2^{[n]}$ with no three pairwise disjoint sets satisfies

$$
|\mathcal{F}| \leqslant \sum_{t=m+1}^{n}\binom{n}{m} .
$$

Step 1. An auxiliary family \mathcal{H}. It consists of:
(a) Three pairwise disjoint m-sets $\quad H^{1}, H^{2}, H^{3} \subset[3 m+2]$.

$$
\left(\text { Put }\{x, y\}:=[3 m+2] \backslash \cup H^{i} .\right)
$$

(b) Three maximal chains $\{\emptyset\}=: H_{0}^{i} \subset H_{1}^{i} \subset \ldots \subset H_{m}^{i}:=H^{i}$.
(c) All sets of the type $H^{i} \cup A$, where $A \subset\{x, y\}$.

Matchings. Proof for $n=3 m+2$

Theorem

Put $n=3 m+2$. Any family $\mathcal{F} \subset 2^{[n]}$ with no three pairwise disjoint sets satisfies

$$
|\mathcal{F}| \leqslant \sum_{t=m+1}^{n}\binom{n}{m} .
$$

Step 2. Weights and averaging. The weights are as follows:
(a) Each set $H \in \mathcal{H}$ of size $t \neq m+1$ gets weight $w(H)=\binom{n}{t}$.
(b) Each set $U \in \mathcal{H}$ of size $m+1$ gets weight $w(U)=\frac{1}{2}\binom{n}{m+1}$.

The sum of weights of all t-sets in \mathcal{H} is equal to $3\binom{n}{t}$.
Need to prove that $\sum_{H \in \mathcal{H} \backslash \mathcal{F}} w(H) \geqslant 3 \sum_{t=0}^{m}\binom{n}{t}$ for any choice of \mathcal{H}.

Matchings. Proof for $n=3 m+2$

Theorem

Put $n=3 m+2$. Any family $\mathcal{F} \subset 2^{[n]}$ with no three pairwise disjoint sets satisfies

$$
|\mathcal{F}| \leqslant \sum_{t=m+1}^{n}\binom{n}{m} .
$$

Step 2. Weights and averaging. The weights are as follows:
(a) Each set $H \in \mathcal{H}$ of size $t \neq m+1$ gets weight $w(H)=\binom{n}{t}$.
(b) Each set $U \in \mathcal{H}$ of size $m+1$ gets weight $w(U)=\frac{1}{2}\binom{n}{m+1}$.

The sum of weights of all t-sets in \mathcal{H} is equal to $3\binom{n}{t}$.
Need to prove that $\quad \sum_{H \in \mathcal{H} \backslash \mathcal{F}} w(H) \geqslant 3 \sum_{t=0}^{m}\binom{n}{t} \quad$ for any choice of \mathcal{H}.

Matchings. Proof for $n=3 m+2$

Theorem

Put $n=3 m+2$. Any family $\mathcal{F} \subset 2^{[n]}$ with no three pairwise disjoint sets satisfies

$$
\begin{align*}
& |\mathcal{F}| \leqslant \sum_{t=m+1}^{n}\binom{n}{m} . \\
& \sum_{H \in \mathcal{H} \backslash \mathcal{F}} w(H) \geqslant 3 \sum_{t=0}^{m}\binom{n}{t} . \tag{1}
\end{align*}
$$

Why (1) implies the theorem? Choose \mathcal{H} "at random".
For any $H \in \mathcal{H}$ of size t

For $t \leqslant m+2$ we have

$$
\mathrm{E}\left[\sum_{H \in \mathcal{H} \cap\binom{[n]}{t} \backslash \mathcal{F}} w(H)\right]=3\left|\binom{[n]}{t} \backslash \mathcal{F}\right| .
$$

Therefore, by (1) we get

$$
3 \sum_{t=0}^{m}\binom{n}{t} \leqslant \mathrm{E}\left[\sum_{H \in \mathcal{H} \backslash \mathcal{F}} w(H)\right]=3 \sum_{t=0}^{m+2}\left|\binom{[n]}{t} \backslash \mathcal{F}\right| \leqslant 3\left|2^{[n]} \backslash \mathcal{F}\right| .
$$

Matchings. Proof for $n=3 m+2$

Theorem

Put $n=3 m+2$. Any family $\mathcal{F} \subset 2^{[n]}$ with no three pairwise disjoint sets satisfies

$$
\begin{align*}
& |\mathcal{F}| \leqslant \sum_{t=m+1}^{n}\binom{n}{m} . \\
& \sum_{H \in \mathcal{H} \backslash \mathcal{F}} w(H) \geqslant 3 \sum_{t=0}^{m}\binom{n}{t} . \tag{1}
\end{align*}
$$

Why (1) implies the theorem? Choose \mathcal{H} "at random".
For any $H \in \mathcal{H}$ of size $t \quad \operatorname{Pr}[H \notin \mathcal{F}]=\frac{\left|\binom{[n]}{t} \backslash \mathcal{F}\right|}{\binom{n}{t}}$.
For $t \leqslant m+2$ we have $\mathrm{E}\left[\sum_{H \in \mathcal{H} \cap\binom{[n]}{t} \backslash \mathcal{F}} w(H)\right]=3\left|\binom{[n]}{t} \backslash \mathcal{F}\right|$.
Therefore, by (1) we get

$$
3 \sum_{t=0}^{m}\binom{n}{t} \leqslant \mathrm{E}\left[\sum_{H \in \mathcal{H} \backslash \mathcal{F}} w(H)\right]=3 \sum_{t=0}^{m+2}\left|\binom{[n]}{t} \backslash \mathcal{F}\right| \leqslant 3\left|2^{[n]} \backslash \mathcal{F}\right| .
$$

Proof of the $n=3 m+2$ case

$$
\text { Need to prove } \quad \sum_{H \in \mathcal{H} \backslash \mathcal{F}} w(H) \geqslant 3 \sum_{t=0}^{m}\binom{n}{t} \text {. }
$$

Step 3. Analysis of $\mathcal{F} \cap \mathcal{H}$.
We can assume that \mathcal{F} is closed upwards.
Case 1: For each $i \in[3] H^{i} \notin \mathcal{F}$. Then all H_{t}^{i} are missing, $t=0, \ldots, m$. We are done.

Case 2: $H^{1}, H^{2} \in \mathcal{F}, H^{3} \notin \mathcal{F}$. Then $H^{3} \cup\{x, y\} \notin \mathcal{F}$. We have

We use that $\binom{n}{m+2} \geqslant\binom{ n}{m+1}>\sum_{t=0}^{m}\binom{n}{t}$.

Proof of the $n=3 m+2$ case

$$
\text { Need to prove } \quad \sum_{H \in \mathcal{H} \backslash \mathcal{F}} w(H) \geqslant 3 \sum_{t=0}^{m}\binom{n}{t} \text {. }
$$

Step 3. Analysis of $\mathcal{F} \cap \mathcal{H}$.
We can assume that \mathcal{F} is closed upwards.
Case 1: For each $i \in[3] H^{i} \notin \mathcal{F}$. Then all H_{t}^{i} are missing, $t=0, \ldots, m$. We are done.

Case 2: $H^{1}, H^{2} \in \mathcal{F}, H^{3} \notin \mathcal{F}$. Then $H^{3} \cup\{x, y\} \notin \mathcal{F}$. We have

$$
\sum_{H \in \mathcal{H} \backslash \mathcal{F}} w(H) \geqslant \sum_{t=0}^{m+2}\binom{n}{t}>3 \sum_{t=0}^{m}\binom{n}{t} .
$$

We use that $\binom{n}{m+2} \geqslant\binom{ n}{m+1}>\sum_{t=0}^{m}\binom{n}{t}$.

Proof of the $n=3 m+2$ case

$$
\sum_{H \in \mathcal{H} \backslash \mathcal{F}} w(H) \geqslant 3 \sum_{t=0}^{m}\binom{n}{t}
$$

Case 3: $H^{1} \in \mathcal{F}, H^{2}, H^{3} \notin \mathcal{F}$. Then in each pair

$$
\left(H^{2} \cup\{x\}, H^{3} \cup\{y\}\right), \quad\left(H^{2} \cup\{y\}, H^{3} \cup\{x\}\right)
$$

one set is missing. We get

$$
\sum_{H \in \mathcal{H} \backslash \mathcal{F}} w(H) \geqslant\binom{ n}{m+1}+2 \sum_{t=0}^{m}\binom{n}{t}>3 \sum_{t=0}^{m}\binom{n}{t}
$$

Matchings. The uniform case

How to construct a large family $\mathcal{A} \subset\binom{[n]}{k}$, satisfying $\nu(\mathcal{A})<s$?
$\mathcal{A}_{1}^{(k)}(n, s):=\left\{A \in\binom{[n]}{k}: A \cap[s-1] \neq \emptyset\right\}, \quad \mathcal{A}_{k}^{(k)}(n, s):=\binom{[s k-1]}{k}$.

Erdős Matching Conjecture, 1965

For $n \geqslant s k$ we have

$$
e_{k}(n, s)=\max \left\{\left|\mathcal{A}_{1}^{(k)}(n, s)\right|,\left|\mathcal{A}_{k}^{(k)}(n, s)\right|\right\}
$$

True for $k \leqslant 3$ (Erdős and Gallai; Łuczak and Mieczkowska; Frankl).

Matchings. The uniform case

How to construct a large family $\mathcal{A} \subset\binom{[n]}{k}$, satisfying $\nu(\mathcal{A})<s$?

$$
\mathcal{A}_{1}^{(k)}(n, s):=\left\{A \in\binom{[n]}{k}: A \cap[s-1] \neq \emptyset\right\}, \quad \mathcal{A}_{k}^{(k)}(n, s):=\binom{[s k-1]}{k} .
$$

Erdős Matching Conjecture, 1965
For $n \geqslant s k$ we have

$$
e_{k}(n, s)=\max \left\{\left|\mathcal{A}_{1}^{(k)}(n, s)\right|,\left|\mathcal{A}_{k}^{(k)}(n, s)\right|\right\} .
$$

True for $k \leqslant 3$ (Erdős and Gallai; Łuczak and Mieczkowska; Frankl).
$e_{k}(n, s+1)=\binom{n}{k}-\binom{n-s+1}{k}$

Matchings. The uniform case

How to construct a large family $\mathcal{A} \subset\binom{[n]}{k}$, satisfying $\nu(\mathcal{A})<s$?

$$
\mathcal{A}_{1}^{(k)}(n, s):=\left\{A \in\binom{[n]}{k}: A \cap[s-1] \neq \emptyset\right\}, \quad \mathcal{A}_{k}^{(k)}(n, s):=\binom{[s k-1]}{k} .
$$

Erdős Matching Conjecture, 1965
For $n \geqslant s k$ we have

$$
e_{k}(n, s)=\max \left\{\left|\mathcal{A}_{1}^{(k)}(n, s)\right|,\left|\mathcal{A}_{k}^{(k)}(n, s)\right|\right\} .
$$

True for $k \leqslant 3$ (Erdős and Gallai; Łuczak and Mieczkowska; Frankl).

$$
e_{k}(n, s+1)=\binom{n}{k}-\binom{n-s+1}{k} \quad \text { for } \quad n \geqslant(2 s-1) k-s \quad \text { (Frankl). }
$$

Stability Results

The covering number $\tau(\mathcal{H})$ of a family is the minimum of $|T|$ over all T satisfying $T \cap H \neq \emptyset$ for all $H \in \mathcal{H}$.

Hilton-Milner, 1967
Let $n \geqslant 2 k$ and $\mathcal{F} \subset\binom{[n]}{k}$ satisfy $\nu(\mathcal{F})<2$ and $\tau(\mathcal{F}) \geqslant 2$. Then

$$
|\mathcal{F}| \leqslant\binom{ n-1}{k-1}-\binom{n-k-1}{k-1}+1 \quad \text { holds. }
$$

Stability Results

Theorem 4 (P. Frankl, AK, 2016)
Assume that $\nu(\mathcal{F})<s, \tau(\mathcal{F}) \geqslant s$. Then the following holds:

$$
|\mathcal{F}| \leqslant\binom{ n}{k}-\binom{n-s+1}{k}-\binom{n-s+1-k}{k-1}+1,
$$

provided $k \geqslant 3, \quad n \geqslant(2+o(1)) s k$, where $o(1)$ depends on s only.
Known to be true for $n>2 k^{3} s$: Bollobás, Daykin and Erdős (1976).

Implications for other problems: anti-Ramsey type questions, non-uniform families with no large matchings, degree versions.

Open problems.

Let $\alpha_{1} \geqslant \ldots \geqslant \alpha_{n} \geqslant 0$ be reals, $\sum_{i} \alpha_{i}<s$. Put $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

$$
\mathcal{F}(\boldsymbol{\alpha}):=\left\{F \in 2^{[n]}: \sum_{i \in F} \alpha_{i} \geqslant 1\right\} .
$$

Then $\nu\left(\mathcal{F}(\boldsymbol{\alpha})<s\right.$ holds. Also $\mathcal{F}(\boldsymbol{\alpha})=\{0,1\}^{n} \cap\left\{\mathbf{x} \in \mathbb{R}^{n}:\langle\mathbf{x}, \boldsymbol{\alpha}\rangle \geqslant 1\right\}$.
Conjecture (P. Frankl, AK, 2016)
For any n, s the maximum of $e(n, s)$ (or $e_{k}(n, s)$) is attained on the family $\mathcal{F}(\boldsymbol{\alpha})$ for suitable $\boldsymbol{\alpha} \in \mathbb{R}^{n}$.

Non-uniform case:
Maximum size of families without certain structures involving disjoint sets (e.g., r-partition free families, introduced by Frankl in 1977).

