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Introduction

The set of points S lying between two parallel hyperplanes in
Rd at distance w from each other is called a slab (a strip in
R2) of width w.

The problem we tackle: Given a sequence of slabs, we aim
to cover the whole plane or a unit ball with their translates.
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Slabs

Makai and Pach, Erdős and Straus, Groemer
There is a constant c such that any system of slabs in the
plane with total width at least c permits a translative covering
of a disk of diameter 1.

Corollary: any sequence of slabs with divergent total weight
permits a translative covering of the plane.

What about higher dimensions?
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Makai-Pach conjecture

Conjecture (Makai-Pach)

Let d be a positive integer. A sequence of slabs in Rd with
widths w1, w2, . . . permits a translative covering of Rd if and
only if

∑∞
i=1wi =∞.

Groemer: It is true provided
∑∞

i=1w
d+1
2

i =∞.

Theorem 1 (Kupavskii-Pach)
It is true if w1 > w2 > . . . is a monotone decreasing infinite
sequence of positive numbers such that

lim sup
n→∞

w1 + w2 + . . .+ wn

log(1/wn)
> 0.
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Intermission: Tarski’s plank problem

Theorem (Tarski, 1932)

The total width of any system of strips that cover a disk in R2

of unit diameter is at least 1.

Bang, 1950: The same holds for balls in higher dimensions.
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Outline of the proof of Theorem 1

Instead of covering the space, cover a unit ball with a
finite portion of the sequence.

Make the slabs twice thinner and cover a large fraction of
the ball with “thin” slabs.

The remaining part is so small that in each of its point’s
ε-neighborhood there is a point that is covered.

Blow up the slabs. Now everything is covered.
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Controlling polynomials

Let F be a class of real functions R→ R. We say that a
sequence of positive numbers x1, x2, . . . is F -controlling if
there exist reals y1, y2, . . . with the property that for every
` ∈ F , one can find an i with

|f(xi)− yi| 6 1.

Let Pd denote the class of polynomials R→ R of degree at
most d.
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Theorem 2

Theorem 2 (Kupavskii-Pach)
Let d be a positive integer and 0 < x1 6 x2 6 . . . be a
monotone increasing infinite sequence of positive numbers.
The sequence x1, x2, . . . is Pd-controlling if and only if

lim
n→∞

(x−d1 + x−d2 + . . .+ x−dn ) =∞.
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Reduction to a slab problem

Take a polynomial p(x) =
∑d

j=0 ajx
j. p(x) = 〈x, a〉,

where x = (1, x, . . . , xd), a = (a0, a1, . . . , ad) ∈ Rd+1,
〈, 〉 stands for the scalar product.

Using this notation, |p(xi)− yi| 6 1 can be rewritten as

yi − 1 6 〈xi, a〉 6 yi + 1.

Assuming |xi| > 2, the locus of points a ∈ Rd+1 satisfying
this double inequality is a slab of width wi =

2
‖xi‖ >

1
|xi|d .
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Proof of Theorem 2.

By pigeon-hole principle select the slabs that are almost
parallel.

Instead of covering a unit ball, we cover an appropriate
simplex.

The simplex is formed by a basis u1, . . . ,ud+1 in Rd+1,
that satisfy

(i)
〈xi+1,u1〉
〈xi,u1〉

6
〈xi+1,uj〉
〈xi,uj〉

,

(ii) 〈xi,uj〉 > 1/2‖xi‖‖uj‖.
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Proof of Theorem 2.

Ensure the growth of the simplex by increasing one of its
sides at each step. Make sure that the region covered stay
convex.

Choose a unit ball inside the simplex. It is possible since
the simplex is not flat and one of the sides is large.
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Open problems

Makai-Pach
Is it true that a sequence of slabs in Rd with widths w1, w2, . . .
permits a translative covering of Rd iff

∑∞
i=1wi =∞?

Conditions on controlling sequences for Lipschitz functions
Rm → Rn.
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