Covering the space by slabs

Andrey B. Kupavskii
EPFL, Lausanne and MIPT, Moscow

Joint work with Janos Pach

Introduction

The set of points S lying between two parallel hyperplanes in \mathbb{R}^{d} at distance w from each other is called a slab (a strip in \mathbb{R}^{2}) of width w.

The problem we tackle: Given a sequence of slabs, we aim to cover the whole plane or a unit ball with their translates.

Introduction

The set of points S lying between two parallel hyperplanes in \mathbb{R}^{d} at distance w from each other is called a slab (a strip in \mathbb{R}^{2}) of width w.

The problem we tackle: Given a sequence of slabs, we aim to cover the whole plane or a unit ball with their translates.

Slabs

Makai and Pach, Erdős and Straus, Groemer

There is a constant c such that any system of slabs in the plane with total width at least c permits a translative covering of a disk of diameter 1 .

Corollary: any sequence of slabs with divergent total weight permits a translative covering of the plane.

What about higher dimensions?

Slabs

Makai and Pach, Erdős and Straus, Groemer

There is a constant c such that any system of slabs in the plane with total width at least c permits a translative covering of a disk of diameter 1 .

Corollary: any sequence of slabs with divergent total weight permits a translative covering of the plane.

What about higher dimensions?

Slabs

Makai and Pach, Erdős and Straus, Groemer

There is a constant c such that any system of slabs in the plane with total width at least c permits a translative covering of a disk of diameter 1 .

Corollary: any sequence of slabs with divergent total weight permits a translative covering of the plane.

What about higher dimensions?

Makai-Pach conjecture

Conjecture (Makai-Pach)

Let d be a positive integer. A sequence of slabs in \mathbb{R}^{d} with widths w_{1}, w_{2}, \ldots permits a translative covering of \mathbb{R}^{d} if and only if $\sum_{i=1}^{\infty} w_{i}=\infty$.

Groemer: It is true provided $\sum_{i=1}^{\infty} w_{i}^{\frac{d+1}{2}}=\infty$.

Theorem 1 (Kupavskii-Pach)

It is true if $w_{1} \geqslant w_{2} \geqslant \ldots$ is a monotone decreasing infinite sequence of positive numbers such that

Makai-Pach conjecture

Conjecture (Makai-Pach)

Let d be a positive integer. A sequence of slabs in \mathbb{R}^{d} with widths w_{1}, w_{2}, \ldots permits a translative covering of \mathbb{R}^{d} if and only if $\sum_{i=1}^{\infty} w_{i}=\infty$.

Groemer: It is true provided $\sum_{i=1}^{\infty} w_{i}^{\frac{d+1}{2}}=\infty$.

Theorem 1 (Kupavskii-Pach)

It is true if $w_{1} \geqslant w_{2} \geqslant \ldots$ is a monotone decreasing infinite sequence of positive numbers such that

Makai-Pach conjecture

Conjecture (Makai-Pach)

Let d be a positive integer. A sequence of slabs in \mathbb{R}^{d} with widths w_{1}, w_{2}, \ldots permits a translative covering of \mathbb{R}^{d} if and only if $\sum_{i=1}^{\infty} w_{i}=\infty$.

Groemer: It is true provided $\sum_{i=1}^{\infty} w_{i}^{\frac{d+1}{2}}=\infty$.

Theorem 1 (Kupavskii-Pach)

It is true if $w_{1} \geqslant w_{2} \geqslant \ldots$ is a monotone decreasing infinite sequence of positive numbers such that

$$
\limsup _{n \rightarrow \infty} \frac{w_{1}+w_{2}+\ldots+w_{n}}{\log \left(1 / w_{n}\right)}>0 .
$$

Intermission: Tarski's plank problem

Theorem (Tarski, 1932)

The total width of any system of strips that cover a disk in \mathbb{R}^{2} of unit diameter is at least 1 .

Bang, 1950: The same holds for balls in higher dimensions.

Intermission: Tarski's plank problem

Theorem (Tarski, 1932)

The total width of any system of strips that cover a disk in \mathbb{R}^{2} of unit diameter is at least 1 .

Bang, 1950: The same holds for balls in higher dimensions.

Outline of the proof of Theorem 1

- Instead of covering the space, cover a unit ball with a finite portion of the sequence.
- Make the slabs twice thinner and cover a large fraction of the ball with "thin" slabs.
- The remaining part is so small that in each of its point's ϵ-neighborhood there is a point that is covered.

Outline of the proof of Theorem 1

- Instead of covering the space, cover a unit ball with a finite portion of the sequence.
- Make the slabs twice thinner and cover a large fraction of the ball with "thin" slabs.
- The remaining part is so small that in each of its point's ϵ-neighborhood there is a point that is covered.
- Blow up the slabs. Now everything is covered.

Outline of the proof of Theorem 1

- Instead of covering the space, cover a unit ball with a finite portion of the sequence.
- Make the slabs twice thinner and cover a large fraction of the ball with "thin" slabs.
- The remaining part is so small that in each of its point's ϵ-neighborhood there is a point that is covered.
- Blow up the slabs. Now everything is covered.

Outline of the proof of Theorem 1

- Instead of covering the space, cover a unit ball with a finite portion of the sequence.
- Make the slabs twice thinner and cover a large fraction of the ball with "thin" slabs.
- The remaining part is so small that in each of its point's ϵ-neighborhood there is a point that is covered.
- Blow up the slabs. Now everything is covered.

Controlling polynomials

Let \mathcal{F} be a class of real functions $\mathbb{R} \rightarrow \mathbb{R}$. We say that a sequence of positive numbers x_{1}, x_{2}, \ldots is \mathcal{F}-controlling if there exist reals y_{1}, y_{2}, \ldots with the property that for every $\ell \in \mathcal{F}$, one can find an i with

$$
\left|f\left(x_{i}\right)-y_{i}\right| \leqslant 1 .
$$

Let \mathcal{P}_{d} denote the class of polynomials $\mathbb{R} \rightarrow \mathbb{R}$ of degree at most d.

Controlling polynomials

Let \mathcal{F} be a class of real functions $\mathbb{R} \rightarrow \mathbb{R}$. We say that a sequence of positive numbers x_{1}, x_{2}, \ldots is \mathcal{F}-controlling if there exist reals y_{1}, y_{2}, \ldots with the property that for every $\ell \in \mathcal{F}$, one can find an i with

$$
\left|f\left(x_{i}\right)-y_{i}\right| \leqslant 1 .
$$

Let \mathcal{P}_{d} denote the class of polynomials $\mathbb{R} \rightarrow \mathbb{R}$ of degree at most d.

Theorem 2 (Kupavskii-Pach)

Let d be a positive integer and $0<x_{1} \leqslant x_{2} \leqslant \ldots$ be a monotone increasing infinite sequence of positive numbers.
The sequence x_{1}, x_{2}, \ldots is \mathcal{P}_{d}-controlling if and only if

$$
\lim _{n \rightarrow \infty}\left(x_{1}^{-d}+x_{2}^{-d}+\ldots+x_{n}^{-d}\right)=\infty
$$

- Take a polynomial $p(x)=\sum_{j=0}^{d} a_{j} x^{j} \cdot p(x)=\langle\mathbf{x}, \mathbf{a}\rangle$, where $\mathbf{x}=\left(1, x, \ldots, x^{d}\right), \mathbf{a}=\left(a_{0}, a_{1}, \ldots, a_{d}\right) \in \mathbb{R}^{d+1}$, \langle,$\rangle stands for the scalar product.$
- Using this notation, $\left|p\left(x_{i}\right)-y_{i}\right| \leqslant 1$ can be rewritten as

$$
y_{i}-1 \leqslant\left\langle\mathbf{x}_{i}, \mathbf{a}\right\rangle \leqslant y_{i}+1
$$

- Assuming $\left|x_{i}\right| \geqslant 2$, the locus of points $\mathbf{a} \in \mathbb{R}^{d+1}$ satisfying
- Take a polynomial $p(x)=\sum_{j=0}^{d} a_{j} x^{j} \cdot p(x)=\langle\mathbf{x}, \mathbf{a}\rangle$, where $\mathbf{x}=\left(1, x, \ldots, x^{d}\right), \mathbf{a}=\left(a_{0}, a_{1}, \ldots, a_{d}\right) \in \mathbb{R}^{d+1}$, \langle,$\rangle stands for the scalar product.$
- Using this notation, $\left|p\left(x_{i}\right)-y_{i}\right| \leqslant 1$ can be rewritten as

$$
y_{i}-1 \leqslant\left\langle\mathbf{x}_{i}, \mathbf{a}\right\rangle \leqslant y_{i}+1
$$

- Assuming $\left|x_{i}\right| \geqslant 2$, the locus of points $\mathbf{a} \in \mathbb{R}^{d+1}$ satisfying this double inequality is a slab of width $w_{i}=\frac{2}{\left\|\mathbf{x}_{i}\right\|} \geqslant \frac{1}{\left|x_{i}\right|^{d}}$.
- Take a polynomial $p(x)=\sum_{j=0}^{d} a_{j} x^{j} . p(x)=\langle\mathbf{x}, \mathbf{a}\rangle$, where $\mathbf{x}=\left(1, x, \ldots, x^{d}\right), \mathbf{a}=\left(a_{0}, a_{1}, \ldots, a_{d}\right) \in \mathbb{R}^{d+1}$, \langle,$\rangle stands for the scalar product.$
- Using this notation, $\left|p\left(x_{i}\right)-y_{i}\right| \leqslant 1$ can be rewritten as

$$
y_{i}-1 \leqslant\left\langle\mathbf{x}_{i}, \mathbf{a}\right\rangle \leqslant y_{i}+1 .
$$

- Assuming $\left|x_{i}\right| \geqslant 2$, the locus of points $\mathbf{a} \in \mathbb{R}^{d+1}$ satisfying this double inequality is a slab of width $w_{i}=\frac{2}{\left\|\mathbf{x}_{i}\right\|} \geqslant \frac{1}{\left|x_{i}\right| \|^{\prime}}$.

Proof of Theorem 2.

- By pigeon-hole principle select the slabs that are almost parallel.
- Instead of covering a unit ball, we cover an appropriate simplex.
- The simplex is formed by a basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{d+1}$ in \mathbb{R}^{d+1}, that satisfy

- By pigeon-hole principle select the slabs that are almost parallel.
- Instead of covering a unit ball, we cover an appropriate simplex.
- The simplex is formed by a basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{d+1}$ in \mathbb{R}^{d+1}, that satisfy
(ii) $\quad\left\langle\mathbf{x}_{i}, \mathbf{u}_{j}\right\rangle \geqslant 1 / 2\left\|\mathbf{x}_{i}\right\|\left\|\mathbf{u}_{j}\right\|$.
- By pigeon-hole principle select the slabs that are almost parallel.
- Instead of covering a unit ball, we cover an appropriate simplex.
- The simplex is formed by a basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{d+1}$ in \mathbb{R}^{d+1}, that satisfy

$$
\begin{aligned}
& \text { (i) } \quad \frac{\left\langle\mathbf{x}_{i+1}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{x}_{i}, \mathbf{u}_{1}\right\rangle} \leqslant \frac{\left\langle\mathbf{x}_{i+1}, \mathbf{u}_{j}\right\rangle}{\left\langle\mathbf{x}_{i}, \mathbf{u}_{j}\right\rangle} \\
& \text { (ii) } \quad\left\langle\mathbf{x}_{i}, \mathbf{u}_{j}\right\rangle \geqslant 1 / 2\left\|\mathbf{x}_{i}\right\|\left\|\mathbf{u}_{j}\right\| .
\end{aligned}
$$

Proof of Theorem 2.

- Ensure the growth of the simplex by increasing one of its sides at each step. Make sure that the region covered stay convex.
- Choose a unit ball inside the simplex. It is possible since the simplex is not flat and one of the sides is large.
- Ensure the growth of the simplex by increasing one of its sides at each step. Make sure that the region covered stay convex.
- Choose a unit ball inside the simplex. It is possible since the simplex is not flat and one of the sides is large.

Open problems

Makai-Pach

Is it true that a sequence of slabs in \mathbb{R}^{d} with widths w_{1}, w_{2}, \ldots permits a translative covering of \mathbb{R}^{d} iff $\sum_{i=1}^{\infty} w_{i}=\infty$?

Conditions on controlling sequences for Lipschitz functions

 $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.
Open problems

Makai-Pach

Is it true that a sequence of slabs in \mathbb{R}^{d} with widths w_{1}, w_{2}, \ldots permits a translative covering of \mathbb{R}^{d} iff $\sum_{i=1}^{\infty} w_{i}=\infty$?

Conditions on controlling sequences for Lipschitz functions $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

