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Slabs

The set of points S lying between two parallel hyperplanes in Rd at
distance w from each other is called a slab of width w.

Makai and Pach, Erdős and Straus, Groemer:
There is a constant c such that any system of slabs in the plane with total
width at least c permits a translative covering of a disk of diameter 1.
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It implies that ny sequence of slabs whose total weight is divergent
permits a translative covering of the whole plane.

What about higher dimensions?
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Makai-Pach conjecture

Conjecture (Makai-Pach)

Let d be a positive integer. A sequence of slabs in Rd with widths
w1, w2, . . . permits a translative covering of Rd if and only if∑∞

i=1 wi =∞.

Groemer: It is true if
∑∞

i=1 w
d+1
2

i =∞.

Theorem 1 (Kupavskii-Pach)

It is true if w1 > w2 > . . . is a monotone decreasing infinite sequence of
positive numbers such that

lim sup
n→∞

w1 + w2 + . . .+ wn

log(1/wn)
> 0.
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Proof of theorem 1

Theorem 1’
Let d be a positive integer, and let w1 > w2 > . . . > wn be positive
numbers such that

w1 + w2 + . . .+ wn > 3d log(2/wn).

Then any sequence of slabs S1, . . . , Sn ⊂ Rd with widths w1, . . . , wn,
resp., permits a translative covering of a d-dimensional ball of diameter
1− wn/2.
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Controlling polynomials

Let F be a class of real functions R→ R. We say that a sequence of
positive numbers x1, x2, . . . is F-controlling if there exist reals y1, y2, . . .
with the property that for every ` ∈ P, one can find an i with

|f(xi)− yi| 6 1.

Let Pd denote the class of polynomials R→ R of degree at most d.

Theorem 2 (Kupavskii-Pach)

Let d be a positive integer and x1 6 x2 6 . . . be a monotone increasing
infinite sequence of positive numbers. The sequence x1, x2, . . . is
Pd-controlling if and only if

lim
n→∞

(x−d1 + x−d2 + . . .+ x−dn ) =∞.

Andrey B. Kupavskii, Janos Pach Covering the space by slabs



Controlling polynomials

Let F be a class of real functions R→ R. We say that a sequence of
positive numbers x1, x2, . . . is F-controlling if there exist reals y1, y2, . . .
with the property that for every ` ∈ P, one can find an i with

|f(xi)− yi| 6 1.

Let Pd denote the class of polynomials R→ R of degree at most d.

Theorem 2 (Kupavskii-Pach)

Let d be a positive integer and x1 6 x2 6 . . . be a monotone increasing
infinite sequence of positive numbers. The sequence x1, x2, . . . is
Pd-controlling if and only if

lim
n→∞

(x−d1 + x−d2 + . . .+ x−dn ) =∞.

Andrey B. Kupavskii, Janos Pach Covering the space by slabs



Proof of Theorem 2. Key Lemma

For every positive integer d, for any system of d+ 1 linearly independent
vectors u1, . . . ,ud+1 in Rd+1, and for any γ > 0, there is a constant c
with the following property.
Given any system of slabs Si (i = 1, . . . , n) in Rd+1, whose normal
vectors xi satisfy the conditions

(i)
〈xi+1,u1〉
〈xi,u1〉

6
〈xi+1,uj〉
〈xi,uj〉

,

(ii) 〈xi,uj〉 > γ‖xi‖‖uj‖

for every i and j, and whose total width
∑n

i=1 wi is at least c, the slabs
Si permit a translative covering of a (d+ 1)-dimensional ball of unit
diameter.
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