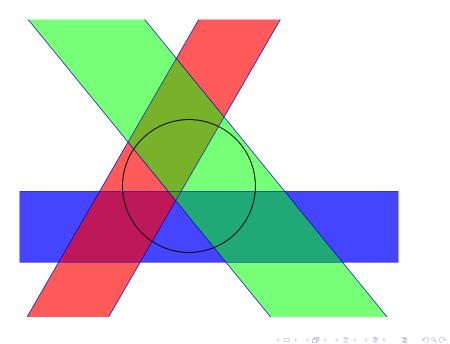
Covering the space by slabs

Andrey B. Kupavskii, Janos Pach

э



The set of points S lying between two parallel hyperplanes in \mathbb{R}^d at distance w from each other is called a *slab* of *width* w.

Makai and Pach, Erdős and Straus, Groemer: There is a constant c such that any system of slabs in the plane with total width at least c permits a translative covering of a disk of diameter 1.

• = • •

The set of points S lying between two parallel hyperplanes in \mathbb{R}^d at distance w from each other is called a *slab* of *width* w.

Makai and Pach, Erdős and Straus, Groemer:

There is a constant c such that any system of slabs in the plane with total width at least c permits a translative covering of a disk of diameter 1.

It implies that ny sequence of slabs whose total weight is divergent permits a translative covering of the whole plane.

What about higher dimensions?

(E) < E)</p>

-

It implies that ny sequence of slabs whose total weight is divergent permits a translative covering of the whole plane.

What about higher dimensions?

(E) < E)</p>

Conjecture (Makai-Pach)

Let d be a positive integer. A sequence of slabs in \mathbb{R}^d with widths w_1, w_2, \ldots permits a translative covering of \mathbb{R}^d if and only if $\sum_{i=1}^{\infty} w_i = \infty$.

Groemer: It is true if
$$\sum_{i=1}^{\infty} w_i^{\frac{d+1}{2}} = \infty$$
.

Theorem 1 (Kupavskii-Pach)

It is true if $w_1 \ge w_2 \ge \ldots$ is a monotone decreasing infinite sequence of positive numbers such that

$$\limsup_{n \to \infty} \frac{w_1 + w_2 + \ldots + w_n}{\log(1/w_n)} > 0.$$

伺 と くき とくき とう

Conjecture (Makai-Pach)

Let d be a positive integer. A sequence of slabs in \mathbb{R}^d with widths w_1, w_2, \ldots permits a translative covering of \mathbb{R}^d if and only if $\sum_{i=1}^{\infty} w_i = \infty$.

Groemer: It is true if
$$\sum_{i=1}^{\infty} w_i^{\frac{d+1}{2}} = \infty$$
.

Theorem 1 (Kupavskii-Pach)

It is true if $w_1 \ge w_2 \ge \ldots$ is a monotone decreasing infinite sequence of positive numbers such that

$$\limsup_{n \to \infty} \frac{w_1 + w_2 + \ldots + w_n}{\log(1/w_n)} > 0.$$

Conjecture (Makai-Pach)

Let d be a positive integer. A sequence of slabs in \mathbb{R}^d with widths w_1, w_2, \ldots permits a translative covering of \mathbb{R}^d if and only if $\sum_{i=1}^{\infty} w_i = \infty$.

Groemer: It is true if
$$\sum_{i=1}^{\infty} w_i^{\frac{d+1}{2}} = \infty$$
.

Theorem 1 (Kupavskii-Pach)

It is true if $w_1 \ge w_2 \ge \ldots$ is a monotone decreasing infinite sequence of positive numbers such that

$$\limsup_{n \to \infty} \frac{w_1 + w_2 + \ldots + w_n}{\log(1/w_n)} > 0.$$

ゆう くほう くほう

Theorem 1'

Let d be a positive integer, and let $w_1 \geqslant w_2 \geqslant \ldots \geqslant w_n$ be positive numbers such that

$$w_1 + w_2 + \ldots + w_n \ge 3d \log(2/w_n).$$

Then any sequence of slabs $S_1, \ldots, S_n \subset \mathbb{R}^d$ with widths w_1, \ldots, w_n , resp., permits a translative covering of a *d*-dimensional ball of diameter $1 - w_n/2$.

Controlling polynomials

Let \mathcal{F} be a class of real functions $\mathbb{R} \to \mathbb{R}$. We say that a sequence of positive numbers x_1, x_2, \ldots is \mathcal{F} -controlling if there exist reals y_1, y_2, \ldots with the property that for every $\ell \in \mathcal{P}$, one can find an i with

$$|f(x_i) - y_i| \leq 1.$$

Let \mathcal{P}_d denote the class of polynomials $\mathbb{R} \to \mathbb{R}$ of degree at most d.

Theorem 2 (Kupavskii-Pach)

Let d be a positive integer and $x_1 \leq x_2 \leq \ldots$ be a monotone increasing infinite sequence of positive numbers. The sequence x_1, x_2, \ldots is \mathcal{P}_d -controlling if and only if

$$\lim_{n \to \infty} (x_1^{-d} + x_2^{-d} + \dots + x_n^{-d}) = \infty.$$

Controlling polynomials

Let \mathcal{F} be a class of real functions $\mathbb{R} \to \mathbb{R}$. We say that a sequence of positive numbers x_1, x_2, \ldots is \mathcal{F} -controlling if there exist reals y_1, y_2, \ldots with the property that for every $\ell \in \mathcal{P}$, one can find an i with

$$|f(x_i) - y_i| \leq 1.$$

Let \mathcal{P}_d denote the class of polynomials $\mathbb{R} \to \mathbb{R}$ of degree at most d.

Theorem 2 (Kupavskii-Pach)

Let d be a positive integer and $x_1 \leq x_2 \leq \ldots$ be a monotone increasing infinite sequence of positive numbers. The sequence x_1, x_2, \ldots is \mathcal{P}_d -controlling if and only if

$$\lim_{n \to \infty} (x_1^{-d} + x_2^{-d} + \ldots + x_n^{-d}) = \infty.$$

For every positive integer d, for any system of d + 1 linearly independent vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{d+1}$ in \mathbb{R}^{d+1} , and for any $\gamma > 0$, there is a constant c with the following property.

Given any system of slabs S_i (i = 1, ..., n) in \mathbb{R}^{d+1} , whose normal vectors \mathbf{x}_i satisfy the conditions

(i)
$$\frac{\langle \mathbf{x}_{i+1}, \mathbf{u}_1 \rangle}{\langle \mathbf{x}_i, \mathbf{u}_1 \rangle} \leq \frac{\langle \mathbf{x}_{i+1}, \mathbf{u}_j \rangle}{\langle \mathbf{x}_i, \mathbf{u}_j \rangle},$$

(ii) $\langle \mathbf{x}_i, \mathbf{u}_j \rangle \geq \gamma \|\mathbf{x}_i\| \|\mathbf{u}_j\|$

for every i and j, and whose total width $\sum_{i=1}^{n} w_i$ is at least c, the slabs S_i permit a translative covering of a (d+1)-dimensional ball of unit diameter.

A B > A B >

