Proof of Schur's conjecture

Andrey Kupavskii, Alexandr Polyanskii

Moscow Institute of Physics and Technology

01.02.2014 Moscow Workshop on Combinatorics and Number Theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Diameter graphs

A graph G = (V, E) is a **diameter graph** in \mathbb{R}^d (on S_r^d), if $V \subset \mathbb{R}^d$ (S_r^d) is a finite set of diameter 1, and edges of G are formed by vertices that are at unit distance apart.

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Diameter graphs

A graph G = (V, E) is a **diameter graph** in \mathbb{R}^d (on S_r^d), if $V \subset \mathbb{R}^d$ (S_r^d) is a finite set of diameter 1, and edges of G are formed by vertices that are at unit distance apart.

Conjecture (Schur et.al., 2003)

Any diameter graph G on n vertices in \mathbb{R}^d has at most n d-cliques.

Version for spheres: Any diameter graph G on n vertices on the sphere S_r^d with $r > 1/\sqrt{2}$ has at most n d-cliques.

うして ふゆう ふほう ふほう うらう

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Morić, Pach, 2013)

Given a diameter graph G on n vertices in \mathbb{R}^d , the number of d-cliques in G does not exceed n, provided that any two d-cliques share at least d-2 vertices.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem (Morić, Pach, 2013)

Given a diameter graph G on n vertices in \mathbb{R}^d , the number of d-cliques in G does not exceed n, provided that any two d-cliques share at least d-2 vertices.

In [Bulankina et. al., 2013] authors proved that the same statement holds for S_r^d with $r > 1/\sqrt{2}$ instead of \mathbb{R}^d .

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem (Morić, Pach, 2013)

Given a diameter graph G on n vertices in \mathbb{R}^d , the number of d-cliques in G does not exceed n, provided that any two d-cliques share at least d-2 vertices.

In [Bulankina et. al., 2013] authors proved that the same statement holds for S_r^d with $r > 1/\sqrt{2}$ instead of \mathbb{R}^d .

The Morić-Pach conjecture, 2013

Any two *d*-cliques in a diameter graph in \mathbb{R}^d share at least d-2 vertices.

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem 1 (Kupavskii, Polyanskii, 2013)

Schur's conjecture and the Morić-Pach conjecture hold 1. In the space \mathbb{R}^d .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

2. On the sphere S_r^d of radius $r > 1/\sqrt{2}$.

Theorem 1 (Kupavskii, Polyanskii, 2013)

```
Schur's conjecture and the Morić-Pach conjecture hold 1. In the space \mathbb{R}^d.
```

2. On the sphere S_r^d of radius $r > 1/\sqrt{2}$.

The proof is based on induction and the following

Theorem 2 (Kupavskii, Polyanskii, 2013)

Consider a diameter graph G 1. In the space \mathbb{R}^d , $d \ge 3$. 2. On the sphere S_r^d of radius $r > 1/\sqrt{2}$, $d \ge 3$. Then any two *d*-cliques in G must share a vertex.

ション ふゆ く 山 マ チャット しょうくしゃ

A rugby ball

A **rugby ball** Θ in \mathbb{R}^d is a set formed by the intersection of the balls $B_i = B_1^d(v_i)$ of unit radius with centers in v_i , i = 1, ..., d, where v_i are the vertices of a unit *d*-simplex in \mathbb{R}^d .

ション ふゆ アメリア メリア しょうめん

- Consider a diameter graph G and two d-cliques K₁, K₂ in G. Denote by v₁,..., v_d the vertices of K₁. Denote by u₁,..., u_d the vertices of K₂.
- Form a rugby ball Θ on K₁ and denote by π the hyperplane containing K₁.
- Put $S_i = S_1^{d-1}(v_i)$ (S_i bounds the balls B_i)
- By v_{d+1} denote one of the two points that lie in the set formed by the intersection of S_i .
- By π^+ denote the half-space that is determined by π and contains v_{d+1} . By π^- denote the other half-space that is determined by π .

• Put $\Delta^+ = \Theta \cap \pi^+$, $\Delta^- = \Theta \cap \pi^-$.

Consider a (d - 1)-dimensional sphere S with center in the center O of the clique K₁ that contains vertices of K₁. Denote by B the ball bounded by S.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Consider a (d 1)-dimensional sphere S with center in the center O of the clique K₁ that contains vertices of K₁. Denote by B the ball bounded by S.
- $S \cap S_i$ is a sphere that lies in the hyperplane π_i , which is orthogonal to π .

ション ふゆ アメリア メリア しょうめん

• By π_i^+ denote the open half-space that is determined by π_i and contains v_i .

property

 $a \in \Theta \setminus B \Rightarrow$ the projection a' of a on the plane π falls strictly inside $T = \operatorname{conv}(v_1, \ldots, v_d)$.

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

property

 $a \in \Theta \setminus B \Rightarrow$ the projection a' of a on the plane π falls strictly inside $T = \operatorname{conv}(v_1, \ldots, v_d)$.

Lemma

Suppose that:

- $a, b \in \Delta^+$;
- the projection a' of a falls into $T = \operatorname{conv}(v_1, v_2, \ldots, v_d)$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• ||a - b|| = 1.

Then we have two possibilities:

1. *a* or $b \in \{v_1, \ldots, v_d\}$; 2. $b \in \pi \cap \Theta$ and $a' \in \partial T$.

property

 $a \in \Theta \setminus B \Rightarrow$ the projection a' of a on the plane π falls strictly inside $T = \operatorname{conv}(v_1, \ldots, v_d)$.

Lemma

Suppose that:

- $a, b \in \Delta^+$;
- the projection a' of a falls into $T = \operatorname{conv}(v_1, v_2, \ldots, v_d)$;
- ||a b|| = 1.

Then we have two possibilities:

1. *a* or $b \in \{v_1, \ldots, v_d\}$; 2. $b \in \pi \cap \Theta$ and $a' \in \partial T$.

corollary

Suppose that there are at least two vertices a, b of K_2 in Δ^+ . If $a \notin B$, then $b \in \{v_1, \ldots, v_d\}$ (and thus Theorem 2 holds!!!!).

case 1 On both sides of the plane π we have at least two points of K_2 , or all vertices of K_2 lie on one side.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- case 1 On both sides of the plane π we have at least two points of K_2 , or all vertices of K_2 lie on one side.
 - If there is a vertex of K_2 that doesn't lie in the ball B then by the corollary we are done.

ション ふゆ アメリア メリア しょうめん

- case 1 On both sides of the plane π we have at least two points of K_2 , or all vertices of K_2 lie on one side.
 - If there is a vertex of K_2 that doesn't lie in the ball B then by the corollary we are done.

ション ふゆ アメリア メリア しょうめん

• Suppose that all the vertices of K_2 lie inside B.

- case 1 On both sides of the plane π we have at least two points of K_2 , or all vertices of K_2 lie on one side.
 - If there is a vertex of K_2 that doesn't lie in the ball *B* then by the corollary we are done.
 - Suppose that all the vertices of K_2 lie inside B.
 - The radius of the minimal ball that contains K_2 equals the radius of B. Then all the points of K_2 must lie on S.

ション ふゆ アメリア メリア しょうめん

- case 1 On both sides of the plane π we have at least two points of K_2 , or all vertices of K_2 lie on one side.
 - If there is a vertex of K_2 that doesn't lie in the ball *B* then by the corollary we are done.
 - Suppose that all the vertices of K_2 lie inside B.
 - The radius of the minimal ball that contains K₂ equals the radius of B. Then all the points of K₂ must lie on S. (by the lemma)⇒

ション ふゆ アメリア メリア しょうめん

• Some of the vertices of K_2 must coincide with some of the v_1, \ldots, v_d .

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

We perturb the simplex K_1 :

- Suppose the distance between u_1 and v_1 is strictly less than 1.
- We start to rotate v_1 around the vertices v_2, \ldots, v_d , which are fixed.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

We perturb the simplex K_1 :

- Suppose the distance between u_1 and v_1 is strictly less than 1.
- We start to rotate v₁ around the vertices v₂,..., v_d, which are fixed. The possible trajectory of v₁ is a circle, and we push v₁ towards π⁻. Denote the image of v₁ by v'.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

We perturb the simplex K_1 :

- Suppose the distance between u_1 and v_1 is strictly less than 1.
- We start to rotate v₁ around the vertices v₂,..., v_d, which are fixed. The possible trajectory of v₁ is a circle, and we push v₁ towards π⁻. Denote the image of v₁ by v'.
- We stop the rotation procedure if one of the two following events happen:
 - 1. The distance between v' and w_1 is equal to 1.
 - 2. Some of the u_2, \ldots, u_d fall on the plane π' that passes through v', v_2, \ldots, v_d .

- We start to rotate v_1 around the vertices v_2, \ldots, v_d , which are fixed.
- We stop the rotation procedure if one of the two following events happen:
 - 1. The distance between v' and u_1 is equal to 1.

2. Some of the u_2, \ldots, u_d fall on the plane π' , which is a plane that passes through v', v_2, \ldots, v_d .

ション ふゆ アメリア メリア しょうめん

i If the first event happens then we change v_1 to v', take another vertex of K_1 and proceed by induction.

- We start to rotate v_1 around the vertices v_2, \ldots, v_d , which are fixed.
- We stop the rotation procedure if one of the two following events happen:
 - 1. The distance between v' and u_1 is equal to 1.

2. Some of the u_2, \ldots, u_d fall on the plane π' , which is a plane that passes through v', v_2, \ldots, v_d .

- i If the first event happens then we change v_1 to v', take another vertex of K_1 and proceed by induction.
- ii The second event reduces (in a certain sense) to **case 1**.

All the vertices $v_1, \ldots, v_d, u_2, \ldots, u_d$ lie on a unit sphere with the center in $u_1 \Rightarrow$ (by the inductive assumption) one of the vertices u_2, u_3, \ldots, u_d coincide with one of the vertices K_1 .

- We start to rotate v_1 around the vertices v_2, \ldots, v_d , which are fixed.
- We stop the rotation procedure if one of the two following events happen:
 - 1. The distance between v' and u_1 is equal to 1.

2. Some of the u_2, \ldots, u_d fall on the plane π' , which is a plane that passes through v', v_2, \ldots, v_d .

- i If the first event happens then we change v_1 to v', take another vertex of K_1 and proceed by induction.
- ii The second event reduces (in a certain sense) to case 1.

All the vertices $v_1, \ldots, v_d, u_2, \ldots, u_d$ lie on a unit sphere with the center in $u_1 \Rightarrow$ (by the inductive assumption) one of the vertices u_2, u_3, \ldots, u_d coincide with one of the vertices K_1 .

Theorem 2 proved! \Rightarrow Schur's conjecture holds!

Conjecture (Morić and Pach)

Let $a_1 \ldots, a_d$ and $b_1 \ldots, b_d$ be two simplices on d vertices in \mathbb{R}^d with $d \ge 3$, such that all their edges have length at least 1. Then there exist $i, j \in \{1, \ldots, d\}$ such that $||a_i - b_j|| \ge 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conjecture (Morić and Pach)

Let $a_1 \ldots, a_d$ and $b_1 \ldots, b_d$ be two simplices on d vertices in \mathbb{R}^d with $d \ge 3$, such that all their edges have length at least 1. Then there exist $i, j \in \{1, \ldots, d\}$ such that $||a_i - b_j|| \ge 1$.

In general, they asked the following question:

Problem (Morić and Pach)

For a given *d*, characterize all pairs *k*, *l* of integers such that for any set of *k* red and *l* blue points in \mathbb{R}^d we can choose a red point *r* and a blue point *b* such that ||r - b|| is at least as large as the smallest distance between two points of the same color.

Conjecture (Kupavskii and Polyanskii)

Given two unit simplices in \mathbb{R}^d , one on d+1 vertices, the other on $\lfloor \frac{d+1}{2} \rfloor + 1$ vertices, either they share a vertex, or the diameter of their union is strictly larger than 1.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの