Proof of Schur's conjecture

Andrey Kupavskii, Alexandr Polyanskii

Moscow Institute of Physics and Technology

$$
01.02 .2014
$$

Moscow Workshop on Combinatorics and Number Theory

Diameter graphs

Diameter graphs
A graph $G=(V, E)$ is a diameter graph in \mathbb{R}^{d} (on S_{r}^{d}), if $V \subset \mathbb{R}^{d}$ $\left(S_{r}^{d}\right)$ is a finite set of diameter 1 , and edges of G are formed by vertices that are at unit distance apart.

Diameter graphs

Diameter graphs

A graph $G=(V, E)$ is a diameter graph in \mathbb{R}^{d} (on S_{r}^{d}), if $V \subset \mathbb{R}^{d}$ $\left(S_{r}^{d}\right)$ is a finite set of diameter 1 , and edges of G are formed by vertices that are at unit distance apart.

Conjecture (Schur et.al., 2003)

Any diameter graph G on n vertices in \mathbb{R}^{d} has at most $n d$-cliques.
Version for spheres: Any diameter graph G on n vertices on the sphere S_{r}^{d} with $r>1 / \sqrt{2}$ has at most $n d$-cliques.

Previous results

Schur's conjecture holds for $d=2$ (Hopf, Pannwitz, 1934), $d=3$ (Schur et. al., 2003), $d=4$ (Kupavskii, 2013)

Previous results

Schur's conjecture holds for $d=2$ (Hopf, Pannwitz, 1934), $d=3$ (Schur et. al., 2003), $d=4$ (Kupavskii, 2013)

Theorem (Morić, Pach, 2013)

Given a diameter graph G on n vertices in \mathbb{R}^{d}, the number of d-cliques in G does not exceed n, provided that any two d-cliques share at least $d-2$ vertices.

Previous results

Schur's conjecture holds for $d=2$ (Hopf, Pannwitz, 1934), $d=3$ (Schur et. al., 2003), $d=4$ (Kupavskii, 2013)

Theorem (Morić, Pach, 2013)

Given a diameter graph G on n vertices in \mathbb{R}^{d}, the number of d-cliques in G does not exceed n, provided that any two d-cliques share at least $d-2$ vertices.

In [Bulankina et. al., 2013] authors proved that the same statement holds for S_{r}^{d} with $r>1 / \sqrt{2}$ instead of \mathbb{R}^{d}.

Previous results

Schur's conjecture holds for $d=2$ (Hopf, Pannwitz, 1934), $d=3$ (Schur et. al., 2003), $d=4$ (Kupavskii, 2013)

Theorem (Morić, Pach, 2013)

Given a diameter graph G on n vertices in \mathbb{R}^{d}, the number of d-cliques in G does not exceed n, provided that any two d-cliques share at least $d-2$ vertices.

In [Bulankina et. al., 2013] authors proved that the same statement holds for S_{r}^{d} with $r>1 / \sqrt{2}$ instead of \mathbb{R}^{d}.

The Morić-Pach conjecture, 2013

Any two d-cliques in a diameter graph in \mathbb{R}^{d} share at least $d-2$ vertices.

Theorem 1 (Kupavskii, Polyanskii, 2013)

Schur's conjecture and the Morić-Pach conjecture hold 1. In the space \mathbb{R}^{d}.
2. On the sphere S_{r}^{d} of radius $r>1 / \sqrt{2}$.

Theorem 1 (Kupavskii, Polyanskii, 2013)

Schur's conjecture and the Morić-Pach conjecture hold 1. In the space \mathbb{R}^{d}.
2. On the sphere S_{r}^{d} of radius $r>1 / \sqrt{2}$.

The proof is based on induction and the following

Theorem 2 (Kupavskii, Polyanskii, 2013)

Consider a diameter graph G

1. In the space $\mathbb{R}^{d}, d \geq 3$.
2. On the sphere S_{r}^{d} of radius $r>1 / \sqrt{2}, d \geq 3$.

Then any two d-cliques in G must share a vertex.

A rugby ball

A rugby ball Θ in \mathbb{R}^{d} is a set formed by the intersection of the balls $B_{i}=B_{1}^{d}\left(v_{i}\right)$ of unit radius with centers in $v_{i}, i=1, \ldots, d$, where v_{i} are the vertices of a unit d-simplex in \mathbb{R}^{d}.

Proof of Theorem 2. Step 1

- Consider a diameter graph G and two d-cliques K_{1}, K_{2} in G. Denote by v_{1}, \ldots, v_{d} the vertices of K_{1}. Denote by u_{1}, \ldots, u_{d} the vertices of K_{2}.
- Form a rugby ball Θ on K_{1} and denote by π the hyperplane containing K_{1}.
- Put $S_{i}=S_{1}^{d-1}\left(v_{i}\right)\left(S_{i}\right.$ bounds the balls $\left.B_{i}\right)$
- By v_{d+1} denote one of the two points that lie in the set formed by the intersection of S_{i}.
- By π^{+}denote the half-space that is determined by π and contains v_{d+1}. By π^{-}denote the other half-space that is determined by π.
- Put $\Delta^{+}=\Theta \cap \pi^{+}, \Delta^{-}=\Theta \cap \pi^{-}$.

Proof of Theorem 2. Step 1

- Consider a $(d-1)$-dimensional sphere S with center in the center O of the clique K_{1} that contains vertices of K_{1}. Denote by B the ball bounded by S.

Proof of Theorem 2. Step 1

- Consider a $(d-1)$-dimensional sphere S with center in the center O of the clique K_{1} that contains vertices of K_{1}. Denote by B the ball bounded by S.
- $S \cap S_{i}$ is a sphere that lies in the hyperplane π_{i}, which is orthogonal to π.
- By π_{i}^{+}denote the open half-space that is determined by π_{i} and contains v_{i}.

property

$a \in \Theta \backslash B \Rightarrow$ the projection a^{\prime} of a on the plane π falls strictly inside $T=\operatorname{conv}\left(v_{1}, \ldots, v_{d}\right)$.

property

$a \in \Theta \backslash B \Rightarrow$ the projection a^{\prime} of a on the plane π falls strictly inside $T=\operatorname{conv}\left(v_{1}, \ldots, v_{d}\right)$.

Lemma

Suppose that:

- $a, b \in \Delta^{+}$;
- the projection a^{\prime} of a falls into $T=\operatorname{conv}\left(v_{1}, v_{2}, \ldots, v_{d}\right)$;
- $\|a-b\|=1$.

Then we have two possibilities:

1. a or $b \in\left\{v_{1}, \ldots, v_{d}\right\}$;
2. $b \in \pi \cap \Theta$ and $a^{\prime} \in \partial T$.

property

$a \in \Theta \backslash B \Rightarrow$ the projection a^{\prime} of a on the plane π falls strictly inside $T=\operatorname{conv}\left(v_{1}, \ldots, v_{d}\right)$.

Lemma

Suppose that:

- $a, b \in \Delta^{+}$;
- the projection a^{\prime} of a falls into $T=\operatorname{conv}\left(v_{1}, v_{2}, \ldots, v_{d}\right)$;
- $\|a-b\|=1$.

Then we have two possibilities:

1. a or $b \in\left\{v_{1}, \ldots, v_{d}\right\}$;
2. $b \in \pi \cap \Theta$ and $a^{\prime} \in \partial T$.

corollary

Suppose that there are at least two vertices a, b of K_{2} in Δ^{+}. If $a \notin B$, then $b \in\left\{v_{1}, \ldots, v_{d}\right\}$ (and thus Theorem 2 holds!!!!).

Proof of Theorem 2. Step 2.

Now we are left with the following two possibilities.
case 1 On both sides of the plane π we have at least two points of K_{2}, or all vertices of K_{2} lie on one side.

Proof of Theorem 2. Step 2.

Now we are left with the following two possibilities.
case 1 On both sides of the plane π we have at least two points of K_{2}, or all vertices of K_{2} lie on one side.

- If there is a vertex of K_{2} that doesn't lie in the ball B then by the corollary we are done.

Proof of Theorem 2. Step 2.

Now we are left with the following two possibilities.
case 1 On both sides of the plane π we have at least two points of K_{2}, or all vertices of K_{2} lie on one side.

- If there is a vertex of K_{2} that doesn't lie in the ball B then by the corollary we are done.
- Suppose that all the vertices of K_{2} lie inside B.

Proof of Theorem 2. Step 2.

Now we are left with the following two possibilities.
case 1 On both sides of the plane π we have at least two points of K_{2}, or all vertices of K_{2} lie on one side.

- If there is a vertex of K_{2} that doesn't lie in the ball B then by the corollary we are done.
- Suppose that all the vertices of K_{2} lie inside B.
- The radius of the minimal ball that contains K_{2} equals the radius of B. Then all the points of K_{2} must lie on S.

Proof of Theorem 2. Step 2.

Now we are left with the following two possibilities.
case 1 On both sides of the plane π we have at least two points of K_{2}, or all vertices of K_{2} lie on one side.

- If there is a vertex of K_{2} that doesn't lie in the ball B then by the corollary we are done.
- Suppose that all the vertices of K_{2} lie inside B.
- The radius of the minimal ball that contains K_{2} equals the radius of B. Then all the points of K_{2} must lie on S. (by the lemma) \Rightarrow
- Some of the vertices of K_{2} must coincide with some of the v_{1}, \ldots, v_{d}.

Proof of Theorem 2. Step 3.

case $2 u_{1} \in \Delta^{+}, u_{2}, \ldots, u_{d} \in \Delta^{-}$

Proof of Theorem 2. Step 3.

case $2 u_{1} \in \Delta^{+}, u_{2}, \ldots, u_{d} \in \Delta^{-}$
We perturb the simplex K_{1} :

- Suppose the distance between u_{1} and v_{1} is strictly less than 1 .
- We start to rotate v_{1} around the vertices v_{2}, \ldots, v_{d}, which are fixed.

Proof of Theorem 2. Step 3.

case $2 u_{1} \in \Delta^{+}, u_{2}, \ldots, u_{d} \in \Delta^{-}$
We perturb the simplex K_{1} :

- Suppose the distance between u_{1} and v_{1} is strictly less than 1 .
- We start to rotate v_{1} around the vertices v_{2}, \ldots, v_{d}, which are fixed. The possible trajectory of v_{1} is a circle, and we push v_{1} towards π^{-}. Denote the image of v_{1} by v^{\prime}.

Proof of Theorem 2. Step 3.

case $2 u_{1} \in \Delta^{+}, u_{2}, \ldots, u_{d} \in \Delta^{-}$
We perturb the simplex K_{1} :

- Suppose the distance between u_{1} and v_{1} is strictly less than 1 .
- We start to rotate v_{1} around the vertices v_{2}, \ldots, v_{d}, which are fixed. The possible trajectory of v_{1} is a circle, and we push v_{1} towards π^{-}. Denote the image of v_{1} by v^{\prime}.
- We stop the rotation procedure if one of the two following events happen:

1. The distance between v^{\prime} and w_{1} is equal to 1 .
2. Some of the u_{2}, \ldots, u_{d} fall on the plane π^{\prime} that passes through $v^{\prime}, v_{2}, \ldots, v_{d}$.

Proof of Theorem 2. Step 3.

case $2 u_{1} \in \Delta^{+}, u_{2}, \ldots, u_{d} \in \Delta^{-}$

- We start to rotate v_{1} around the vertices v_{2}, \ldots, v_{d}, which are fixed.
- We stop the rotation procedure if one of the two following events happen:

1. The distance between v^{\prime} and u_{1} is equal to 1 .
2. Some of the u_{2}, \ldots, u_{d} fall on the plane π^{\prime}, which is a plane that passes through $v^{\prime}, v_{2}, \ldots, v_{d}$.
i If the first event happens then we change v_{1} to v^{\prime}, take another vertex of K_{1} and proceed by induction.

Proof of Theorem 2. Step 3.

case $2 u_{1} \in \Delta^{+}, u_{2}, \ldots, u_{d} \in \Delta^{-}$

- We start to rotate v_{1} around the vertices v_{2}, \ldots, v_{d}, which are fixed.
- We stop the rotation procedure if one of the two following events happen:

1. The distance between v^{\prime} and u_{1} is equal to 1 .
2. Some of the u_{2}, \ldots, u_{d} fall on the plane π^{\prime}, which is a plane that passes through $v^{\prime}, v_{2}, \ldots, v_{d}$.
i If the first event happens then we change v_{1} to v^{\prime}, take another vertex of K_{1} and proceed by induction.
ii The second event reduces (in a certain sense) to case 1.
All the vertices $v_{1}, \ldots, v_{d}, u_{2}, \ldots, u_{d}$ lie on a unit sphere with the center in $u_{1} \Rightarrow$ (by the inductive assumption) one of the vertices $u_{2}, u_{3}, \ldots, u_{d}$ coincide with one of the vertices K_{1}.

Proof of Theorem 2. Step 3.

case $2 u_{1} \in \Delta^{+}, u_{2}, \ldots, u_{d} \in \Delta^{-}$

- We start to rotate v_{1} around the vertices v_{2}, \ldots, v_{d}, which are fixed.
- We stop the rotation procedure if one of the two following events happen:

1. The distance between v^{\prime} and u_{1} is equal to 1 .
2. Some of the u_{2}, \ldots, u_{d} fall on the plane π^{\prime}, which is a plane that passes through $v^{\prime}, v_{2}, \ldots, v_{d}$.
i If the first event happens then we change v_{1} to v^{\prime}, take another vertex of K_{1} and proceed by induction.
ii The second event reduces (in a certain sense) to case 1.
All the vertices $v_{1}, \ldots, v_{d}, u_{2}, \ldots, u_{d}$ lie on a unit sphere with the center in $u_{1} \Rightarrow$ (by the inductive assumption) one of the vertices $u_{2}, u_{3}, \ldots, u_{d}$ coincide with one of the vertices K_{1}.

Theorem 2 proved! \Rightarrow Schur's conjecture holds!

Conjectures and questions

Conjecture (Morić and Pach)

Let $a_{1} \ldots, a_{d}$ and $b_{1} \ldots, b_{d}$ be two simplices on d vertices in \mathbb{R}^{d} with $d \geq 3$, such that all their edges have length at least 1 . Then there exist
$i, j \in\{1, \ldots, d\}$ such that $\left\|a_{i}-b_{j}\right\| \geq 1$.

Conjectures and questions

Conjecture (Morić and Pach)

Let $a_{1} \ldots, a_{d}$ and $b_{1} \ldots, b_{d}$ be two simplices on d vertices in \mathbb{R}^{d} with $d \geq 3$, such that all their edges have length at least 1 . Then there exist $i, j \in\{1, \ldots, d\}$ such that $\left\|a_{i}-b_{j}\right\| \geq 1$.

In general, they asked the following question:

Problem (Morić and Pach)

For a given d, characterize all pairs k, $/$ of integers such that for any set of k red and I blue points in \mathbb{R}^{d} we can choose a red point r and a blue point b such that $\|r-b\|$ is at least as large as the smallest distance between two points of the same color.

Conjectures and questions

Conjecture (Kupavskii and Polyanskii)

Given two unit simplices in \mathbb{R}^{d}, one on $d+1$ vertices, the other on $\left\lfloor\frac{d+1}{2}\right\rfloor+1$ vertices, either they share a vertex, or the diameter of their union is strictly larger than 1 .

