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Diameter graphs

Diameter graphs

A graph G = (V ,E ) is a diameter graph in Rd (on Sd
r ), if V ⊂ Rd

(Sd
r ) is a finite set of diameter 1, and edges of G are formed by vertices

that are at unit distance apart.

Conjecture (Schur et.al., 2003)

Any diameter graph G on n vertices in Rd has at most n d-cliques.

Version for spheres: Any diameter graph G on n vertices on the sphere
Sd
r with r > 1/

√
2 has at most n d-cliques.
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Previous results

Schur’s conjecture holds for d = 2 (Hopf, Pannwitz, 1934), d = 3 (Schur
et. al., 2003), d = 4 (Kupavskii, 2013)

Theorem (Morić, Pach, 2013)

Given a diameter graph G on n vertices in Rd , the number of d-cliques in
G does not exceed n, provided that any two d-cliques share at least
d − 2 vertices.

In [Bulankina et. al., 2013] authors proved that the same statement holds
for Sd

r with r > 1/
√

2 instead of Rd .

The Morić-Pach conjecture, 2013

Any two d-cliques in a diameter graph in Rd share at least d − 2 vertices.
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Theorem 1 (Kupavskii, Polyanskii, 2013)

Schur’s conjecture and the Morić-Pach conjecture hold
1. In the space Rd .
2. On the sphere Sd

r of radius r > 1/
√

2.

The proof is based on induction and the following

Theorem 2 (Kupavskii, Polyanskii, 2013)

Consider a diameter graph G
1. In the space Rd , d ≥ 3.
2. On the sphere Sd

r of radius r > 1/
√

2, d ≥ 3.
Then any two d-cliques in G must share a vertex.



Theorem 1 (Kupavskii, Polyanskii, 2013)

Schur’s conjecture and the Morić-Pach conjecture hold
1. In the space Rd .
2. On the sphere Sd

r of radius r > 1/
√

2.

The proof is based on induction and the following

Theorem 2 (Kupavskii, Polyanskii, 2013)

Consider a diameter graph G
1. In the space Rd , d ≥ 3.
2. On the sphere Sd

r of radius r > 1/
√

2, d ≥ 3.
Then any two d-cliques in G must share a vertex.



A rugby ball

A rugby ball Θ in Rd is a set formed by the intersection of the balls
Bi = Bd

1 (vi ) of unit radius with centers in vi , i = 1, . . . , d , where vi are
the vertices of a unit d-simplex in Rd .



Proof of Theorem 2. Step 1

Consider a diameter graph G and two d-cliques K1, K2 in G . Denote
by v1, . . . , vd the vertices of K1. Denote by u1, . . . , ud the vertices of
K2.
Form a rugby ball Θ on K1 and denote by π the hyperplane
containing K1.
Put Si = Sd−1

1 (vi ) (Si bounds the balls Bi )
By vd+1 denote one of the two points that lie in the set formed by
the intersection of Si .
By π+ denote the half-space that is determined by π and contains
vd+1. By π− denote the other half-space that is determined by π.
Put ∆+ = Θ ∩ π+, ∆− = Θ ∩ π−.



Proof of Theorem 2. Step 1

Consider a (d − 1)-dimensional sphere S with center in the
center O of the clique K1 that contains vertices of K1. Denote by B
the ball bounded by S .

S ∩ Si is a sphere that lies in the hyperplane πi , which is orthogonal
to π.
By π+

i denote the open half-space that is determined by πi and
contains vi .
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property

a ∈ Θ\B ⇒ the projection a′ of a on the plane π falls strictly inside
T = conv(v1, . . . , vd).

Lemma
Suppose that:

a, b ∈ ∆+;
the projection a′ of a falls into T = conv(v1, v2, . . . , vd);
‖a− b‖ = 1.

Then we have two possibilities:
1. a or b ∈ {v1, . . . , vd};
2. b ∈ π ∩Θ and a′ ∈ ∂T .

corollary

Suppose that there are at least two vertices a, b of K2 in ∆+. If a /∈ B,
then b ∈ {v1, . . . , vd} (and thus Theorem 2 holds!!!!).
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Proof of Theorem 2. Step 2.

Now we are left with the following two possibilities.

case 1 On both sides of the plane π we have at least two points of K2, or
all vertices of K2 lie on one side.

If there is a vertex of K2 that doesn’t lie in the ball B then by the
corollary we are done.
Suppose that all the vertices of K2 lie inside B.
The radius of the minimal ball that contains K2 equals the radius of
B. Then all the points of K2 must lie on S .
(by the lemma)⇒
Some of the vertices of K2 must coincide with some of the
v1, . . . , vd .
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Proof of Theorem 2. Step 3.

case 2 u1 ∈ ∆+, u2, . . . , ud ∈ ∆−

We perturb the simplex K1:
Suppose the distance between u1 and v1 is strictly less than 1.
We start to rotate v1 around the vertices v2, . . . , vd , which are fixed.
The possible trajectory of v1 is a circle, and we push v1 towards π−.
Denote the image of v1 by v ′.
We stop the rotation procedure if one of the two following events
happen:
1. The distance between v ′ and w1 is equal to 1.
2. Some of the u2, . . . , ud fall on the plane π′ that passes through
v ′, v2, . . . , vd .
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1. The distance between v ′ and u1 is equal to 1.
2. Some of the u2, . . . , ud fall on the plane π′, which is a plane that
passes through v ′, v2, . . . , vd .

i If the first event happens then we change v1 to v ′, take another
vertex of K1 and proceed by induction.

ii The second event reduces (in a certain sense) to case 1.

All the vertices v1, . . . , vd , u2, . . . , ud lie on a unit sphere with the center
in u1 ⇒ (by the inductive assumption) one of the vertices u2, u3, . . . , ud
coincide with one of the vertices K1.

Theorem 2 proved! ⇒ Schur’s conjecture holds!
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Conjectures and questions

Conjecture (Morić and Pach)

Let a1 . . . , ad and b1 . . . , bd be two simplices on d vertices in Rd with
d ≥ 3, such that all their edges have length at least 1. Then there exist
i , j ∈ {1, . . . , d} such that ‖ai − bj‖ ≥ 1.

In general, they asked the following question:

Problem (Morić and Pach)

For a given d , characterize all pairs k, l of integers such that for any set
of k red and l blue points in Rd we can choose a red point r and a blue
point b such that ‖r − b‖ is at least as large as the smallest distance
between two points of the same color.
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Conjectures and questions

Conjecture (Kupavskii and Polyanskii)

Given two unit simplices in Rd , one on d + 1 vertices, the other on
b d+1

2 c+ 1 vertices, either they share a vertex, or the diameter of their
union is strictly larger than 1.


