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Introduction. Diameter graphs

Diameter graph

A graph G = (V,E) is a diameter graph in Rd if V ⊂ Rd, V is finite,
diamV = 1 and E ⊆ {(x, y), x, y ∈ Rd, |x− y| = 1}, where |x− y|
denotes the Euclidean distance between x and y.

Borsuk’s problem
Vázsonyi’s conjecture
Extremal problems for distance and diameter graphs
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Borsuk’s problem

1933, K. Borsuk:

Is it true that any set of diameter 1 in Rd can be partitioned into d+ 1
parts of smaller diameter?

1955, H. Eggleston, true for d = 3.
1993, J. Kahn, G. Kalai, false for d = 1325, d > 2016.

2013, A. Bondarenko, false for d > 65.

All the known counterexamples are based on finite sets of points.

Andrey B. Kupavskii Diameter graphs in R4



Borsuk’s problem

1933, K. Borsuk:

Is it true that any set of diameter 1 in Rd can be partitioned into d+ 1
parts of smaller diameter?

1955, H. Eggleston, true for d = 3.
1993, J. Kahn, G. Kalai, false for d = 1325, d > 2016.

2013, A. Bondarenko, false for d > 65.

All the known counterexamples are based on finite sets of points.

Andrey B. Kupavskii Diameter graphs in R4



Borsuk’s problem

1933, K. Borsuk:

Is it true that any set of diameter 1 in Rd can be partitioned into d+ 1
parts of smaller diameter?

1955, H. Eggleston, true for d = 3.
1993, J. Kahn, G. Kalai, false for d = 1325, d > 2016.

2013, A. Bondarenko, false for d > 65.

All the known counterexamples are based on finite sets of points.

Andrey B. Kupavskii Diameter graphs in R4



Finite version of Borsuk’s problem. Vázsonyi’s conjecture.

Borsuk’s problem for finite sets translates into the question

Is it true that any diameter graph G in Rd satisfies χ(G) 6 d+ 1?

H. Hopf, E. Pannvitz: the number of edges in a diameter graph on n
vertices in R2 is at most n.
Vázsonyi’s conjecture: the number of edges in a diameter graph on
n vertices in R3 is at most 2n− 2.
It was proved independently by B. Grünbaum, A. Heppes and S.
Straszewicz.
The finite version of Borsuk’s problem in R2,R3 follows from these
results.
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Diameter graphs on the spheres

We consider diameter graphs with unit edges on spheres of radius r > 0.

Any diameter graph G on n vertices on S2
r with r >

√
3/8 has at most n

edges.

Theorem 1 (AK, 2013)

Let G be a diameter graph on n vertices on S3
r . If r > 1/

√
2, then:

G has at most 2n− 2 edges.
χ(G) 6 4.
Any two odd cycles in G have a common vertex.

Remark. One idea important for the proof was communicated to me by
A. Akopyan. Moreover, he told me that he proved this theorem (and even
an analogue for Lobachevskiy space), but have never written it down.
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Discussion

The proof of the theorem is based on the approach of V. Dol’nikov,
which was later developed by K. Swanepoel.

The bound on r in the theorem is tight — for arbitrary n ∈ N one
can realize Kn,n as a diameter graph on S3

1/
√
2
.

One can realize K4 as a diameter graph on the sphere S2√
3/8

and

K5 on the sphere S3√
2/5

.

One can have two vertex-disjoint triangles in a diameter graph on
S3
1/
√
3
.
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Number of edges in diameter and distance graphs

Dd(l, n) — the maximum number of cliques of size l in a diameter graph
on n vertices in Rd.

Ud(l, n) — the same for unit distance graphs in Rd.

(A graph G = (V,E) is a unit distance graph in Rd, if V ⊂ Rd and E is
formed by pairs of vertices that are at unit distance apart.)
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Number of edges in diameter and distance graphs

Question(P. Erdős, 1947): determine U2(2, n) (the maximum number of
edges in a planar n-vertex unit distance graph).

(P. Erdős) For d > 4 we have Ud(2, n), Dd(2, n) ∼ bd/2c−12bd/2c n
2.

Swanepoel, 2009: the exact value of Ud(2, n) for even d > 6 and
sufficiently large n and of Dd(2, n) for d > 4 and sufficiently large n.
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Question(P. Erdős, 1947): determine U2(2, n) (the maximum number of
edges in a planar n-vertex unit distance graph).
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Schur’s conjecture

Conjecture, Schur et. al.

We have Dd(d, n) = n for n > d+ 1.

They verified it for d = 3. For d = 2 it is a result due to H. Hopf, E.
Pannvitz.

F. Morić and J. Pach proved that it is true provided that any two
d-cliques in the diameter graph in Rd have at least d− 2 vertices in
common.

Conjecture, F. Morić and J. Pach

Any two d-cliques in a diameter graph in Rd must have at least d− 2
vertices in common.
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Any two d-cliques in a diameter graph in Rd must have at least d− 2
vertices in common.

Andrey B. Kupavskii Diameter graphs in R4



The main theorem

Theorem 2 (AK, 2013)
1 For n > 52 we have

D4(2, n) =

{
bn/2cdn/2e+ dn/2e+ 1, if n 6≡ 3 mod 4,

bn/2cdn/2e+ dn/2e, if n ≡ 3 mod 4

(this part of the theorem in case of sufficiently large n is due to K.
Swanepoel).

2 For all sufficiently large n we have

D4(3, n) =


(n− 1)2/4 + n, if n ≡ 1 mod 4,

(n− 1)2/4 + n− 1, if n ≡ 3 mod 4,

n(n− 2)/4 + n, if n ≡ 0 mod 2.

3 (Schur’s conjecture in R4) For all n > 5 we have D4(4, n) = n.

Andrey B. Kupavskii Diameter graphs in R4



The main theorem

Theorem 2 (AK, 2013)
1 For n > 52 we have

D4(2, n) =

{
bn/2cdn/2e+ dn/2e+ 1, if n 6≡ 3 mod 4,

bn/2cdn/2e+ dn/2e, if n ≡ 3 mod 4

(this part of the theorem in case of sufficiently large n is due to K.
Swanepoel).

2 For all sufficiently large n we have

D4(3, n) =


(n− 1)2/4 + n, if n ≡ 1 mod 4,

(n− 1)2/4 + n− 1, if n ≡ 3 mod 4,

n(n− 2)/4 + n, if n ≡ 0 mod 2.

3 (Schur’s conjecture in R4) For all n > 5 we have D4(4, n) = n.

Andrey B. Kupavskii Diameter graphs in R4



The main theorem

Theorem 2 (AK, 2013)
1 For n > 52 we have

D4(2, n) =

{
bn/2cdn/2e+ dn/2e+ 1, if n 6≡ 3 mod 4,

bn/2cdn/2e+ dn/2e, if n ≡ 3 mod 4

(this part of the theorem in case of sufficiently large n is due to K.
Swanepoel).

2 For all sufficiently large n we have

D4(3, n) =


(n− 1)2/4 + n, if n ≡ 1 mod 4,

(n− 1)2/4 + n− 1, if n ≡ 3 mod 4,

n(n− 2)/4 + n, if n ≡ 0 mod 2.

3 (Schur’s conjecture in R4) For all n > 5 we have D4(4, n) = n.

Andrey B. Kupavskii Diameter graphs in R4



Ideas of the proof. Theorem 1, part 1.

Decompose the graph into maximal complete bipartite subgraphs.
Use Kővári-Sós-Turán theorem.
Complete bipartite subgraphs lie on two orthogonal circles.
There are “few” edges between the parts.
By induction on the number of vertices show that in the extremal
case there is only one (spanning) complete bipartite subgraph.
Analyze the case with one spanning complete bipartite subgraph.
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Ideas of the proof. Theorem 1 part 2.

A more complicated analogue of the proof of part 1.
Additionally, we use Theorem 1 to estimate the number of triangles
containing one vertex and the total number of triangles.
More complicated decomposition and analysis of the number of
edges (and triangles) that go across the complete bipartite parts.
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Ideas of the proof. Dolnikov’s and Swanepoel’s approach

We sketch the proof of the fact that any diameter graph G in R3 on n
vertices has at most 2n− 2 edges. Moreover, any two odd cycles in G
must share a vertex.

Form the set of all directions of edges of a diameter graph. Each
edge corresponds to two points on the sphere.
Vertex v of G → two sets R(v), B(v): diametrally opposite on the
sphere, R(v) is a spherical convex hull of the directions of edges
going out from v.
For distinct u, v ∈ V (G) the sets R(u), R(v) do not intersect. The
same holds for B(u), B(v). The sets R(u), B(v) may share one
vertex, this corresponds to an edge.
Interpret the sets R(u), B(v) as the vertices of a graph H and
intersections between them as the edges. It is a planar bipartite
graph, which is a double cover of the original graph.
Cycles in the original graphs → self-symmetric closed connected
curves on the sphere. They must intersect.
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Open problems

The proof of Schur’s conjecture is the topic of Alexandr
Polyanskiy’s talk.
Analogue of Theorem 1 for radii

√
3/8 < r < 1/

√
2.

Is it true that in a diameter graph in R4 any two
4-chromatic subgraphs must share an edge?
How many edges there may be in a diameter graph in R4

apart from the edges in its maximal complete bipartite
subgraph? Is this quantity linear in the number of vertices?
Borsuk’s conjecture for finite sets in R4?
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subgraph? Is this quantity linear in the number of vertices?
Borsuk’s conjecture for finite sets in R4?
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