Diameter graphs in \mathbb{R}^{4}

Andrey B. Kupavskii ${ }^{1}$

Moscow Workshop on Combinatorics and Number Theory 27.01.2014-1.02.2014, Moscow, Russia

[^0]
Introduction. Diameter graphs

Diameter graph

A graph $G=(V, E)$ is a diameter graph in \mathbb{R}^{d} if $V \subset \mathbb{R}^{d}, V$ is finite, $\operatorname{diam} V=1$ and $E \subseteq\left\{(x, y), x, y \in \mathbb{R}^{d},|x-y|=1\right\}$, where $|x-y|$ denotes the Euclidean distance between x and y.

- Borsuk's problem
- Vázsonyi's conjecture
- Extremal problems for distance and diameter graphs

Introduction. Diameter graphs

Diameter graph

A graph $G=(V, E)$ is a diameter graph in \mathbb{R}^{d} if $V \subset \mathbb{R}^{d}, V$ is finite, $\operatorname{diam} V=1$ and $E \subseteq\left\{(x, y), x, y \in \mathbb{R}^{d},|x-y|=1\right\}$, where $|x-y|$ denotes the Euclidean distance between x and y.

- Borsuk's problem
- Vázsonyi's conjecture
- Extremal problems for distance and diameter graphs

Borsuk's problem

1933, K. Borsuk:
Is it true that any set of diameter 1 in \mathbb{R}^{d} can be partitioned into $d+1$ parts of smaller diameter?

- 1955, H. Eggleston, true for $d=3$.
- 1993, J. Kahn, G. Kalai, false for $d=1325, d \geqslant 2016$.
- 2013, A. Bondarenko, false for $d \geqslant 65$.

All the known counterexamples are based on finite sets of points.

Borsuk's problem

1933, K. Borsuk:
Is it true that any set of diameter 1 in \mathbb{R}^{d} can be partitioned into $d+1$ parts of smaller diameter?

- 1955, H. Eggleston, true for $d=3$.
- 1993, J. Kahn, G. Kalai, false for $d=1325, d \geqslant 2016$.
- 2013, A. Bondarenko, false for $d \geqslant 65$.

All the known counterexamples are based on finite sets of points.

Borsuk's problem

1933, K. Borsuk:
Is it true that any set of diameter 1 in \mathbb{R}^{d} can be partitioned into $d+1$ parts of smaller diameter?

- 1955, H. Eggleston, true for $d=3$.
- 1993, J. Kahn, G. Kalai, false for $d=1325, d \geqslant 2016$.
- 2013, A. Bondarenko, false for $d \geqslant 65$.

All the known counterexamples are based on finite sets of points.

Borsuk's problem for finite sets translates into the question
Is it true that any diameter graph G in \mathbb{R}^{d} satisfies $\chi(G) \leqslant d+1$?

- H. Hopf, E. Pannvitz: the number of edges in a diameter graph on n vertices in \mathbb{R}^{2} is at most n.
- Vázsonyi's conjecture: the number of edges in a diameter graph on n vertices in \mathbb{R}^{3} is at most $2 n-2$.
- It was proved independently by B. Grünbaum, A. Heppes and S. Straszewicz.
- The finite version of Borsuk's problem in $\mathbb{R}^{2}, \mathbb{R}^{3}$ follows from these results.

Finite version of Borsuk's problem. Vázsonyi's conjecture.

Borsuk's problem for finite sets translates into the question
Is it true that any diameter graph G in \mathbb{R}^{d} satisfies $\chi(G) \leqslant d+1$?

- H. Hopf, E. Pannvitz: the number of edges in a diameter graph on n vertices in \mathbb{R}^{2} is at most n.
- Vázsonyi's conjecture: the number of edges in a diameter graph on n vertices in \mathbb{R}^{3} is at most $2 n-2$.
- It was proved independently by B. Grünbaum, A. Heppes and S. Straszewicz.
- The finite version of Borsuk's problem in $\mathbb{R}^{2}, \mathbb{R}^{3}$ follows from these results.

Borsuk's problem for finite sets translates into the question
Is it true that any diameter graph G in \mathbb{R}^{d} satisfies $\chi(G) \leqslant d+1$?

- H. Hopf, E. Pannvitz: the number of edges in a diameter graph on n vertices in \mathbb{R}^{2} is at most n.
- Vázsonyi's conjecture: the number of edges in a diameter graph on n vertices in \mathbb{R}^{3} is at most $2 n-2$.
- It was proved independently by B. Grünbaum, A. Heppes and S. Straszewicz.
- The finite version of Borsuk's problem in $\mathbb{R}^{2}, \mathbb{R}^{3}$ follows from these results.

Borsuk's problem for finite sets translates into the question
Is it true that any diameter graph G in \mathbb{R}^{d} satisfies $\chi(G) \leqslant d+1$?

- H. Hopf, E. Pannvitz: the number of edges in a diameter graph on n vertices in \mathbb{R}^{2} is at most n.
- Vázsonyi's conjecture: the number of edges in a diameter graph on n vertices in \mathbb{R}^{3} is at most $2 n-2$.
- It was proved independently by B. Grünbaum, A. Heppes and S. Straszewicz.
- The finite version of Borsuk's problem in $\mathbb{R}^{2}, \mathbb{R}^{3}$ follows from these results.

Diameter graphs on the spheres

We consider diameter graphs with unit edges on spheres of radius $r>0$. Any diameter graph G on n vertices on S_{r}^{2} with $r>\sqrt{3 / 8}$ has at most n edges.

Theorem 1 (AK, 2013)

Let G be a diameter graph on n vertices on S_{r}^{3}. If $r>1 / \sqrt{2}$, then

- G has at most $2 n-2$ edges
- Any two odd cycles in G have a common vertex.

Remark. One idea important for the proof was communicated to me by
A Akonvan Moreover he told me that he nroved this theorem (and even
an analogue for Lobachevskiy space), but have never written it down.

Diameter graphs on the spheres

We consider diameter graphs with unit edges on spheres of radius $r>0$. Any diameter graph G on n vertices on S_{r}^{2} with $r>\sqrt{3 / 8}$ has at most n edges.

Theorem 1 (AK, 2013)

Let G be a diameter graph on n vertices on S_{r}^{3}. If $r>1 / \sqrt{2}$, then:

- G has at most $2 n-2$ edges.
- $\chi(G) \leqslant 4$.
- Any two odd cycles in G have a common vertex.

Remark. One idea important for the proof was communicated to me by A. Akopyan. Moreover, he told me that he proved this theorem (and even an analogue for Lobachevskiy space), but have never written it down.

Diameter graphs on the spheres

We consider diameter graphs with unit edges on spheres of radius $r>0$. Any diameter graph G on n vertices on S_{r}^{2} with $r>\sqrt{3 / 8}$ has at most n edges.

Theorem 1 (AK, 2013)

Let G be a diameter graph on n vertices on S_{r}^{3}. If $r>1 / \sqrt{2}$, then:

- G has at most $2 n-2$ edges.
- $\chi(G) \leqslant 4$.
- Any two odd cycles in G have a common vertex.

Remark. One idea important for the proof was communicated to me by A. Akopyan. Moreover, he told me that he proved this theorem (and even an analogue for Lobachevskiy space), but have never written it down.

Diameter graphs on the spheres

We consider diameter graphs with unit edges on spheres of radius $r>0$.
Any diameter graph G on n vertices on S_{r}^{2} with $r>\sqrt{3 / 8}$ has at most n edges.

Theorem 1 (AK, 2013)

Let G be a diameter graph on n vertices on S_{r}^{3}. If $r>1 / \sqrt{2}$, then:

- G has at most $2 n-2$ edges.
- $\chi(G) \leqslant 4$.
- Any two odd cycles in G have a common vertex.

Remark. One idea important for the proof was communicated to me by A. Akopyan. Moreover, he told me that he proved this theorem (and even an analogue for Lobachevskiy space), but have never written it down.

Discussion

- The proof of the theorem is based on the approach of V. Dol'nikov, which was later developed by K. Swanepoel.
- The bound on r in the theorem is tight - for arbitrary $n \in N$ one can realize $K_{n, n}$ as a diameter graph on $S_{1 / \sqrt{2}}^{3}$.
- One can realize K_{4} as a diameter graph on the sphere $S^{2} \sqrt{3 / 8}$ and K_{5} on the sphere S^{3}
- The proof of the theorem is based on the approach of V. Dol'nikov, which was later developed by K. Swanepoel.
- The bound on r in the theorem is tight - for arbitrary $n \in N$ one can realize $K_{n, n}$ as a diameter graph on $S_{1 / \sqrt{2}}^{3}$.
- One can realize K_{4} as a diameter graph on the sphere $S^{2} \sqrt{3 / 8}$ and K_{5} on the sphere $S_{\sqrt{2 / 5}}$.
- One can have two vertex-disjoint triangles in a diameter graph on
- The proof of the theorem is based on the approach of V. Dol'nikov, which was later developed by K. Swanepoel.
- The bound on r in the theorem is tight - for arbitrary $n \in N$ one can realize $K_{n, n}$ as a diameter graph on $S_{1 / \sqrt{2}}^{3}$.
- One can realize K_{4} as a diameter graph on the sphere $S_{\sqrt{3 / 8}}^{2}$ and K_{5} on the sphere $S_{\sqrt{2 / 5}}^{3}$.
- One can have two vertex-disjoint triangles in a diameter graph on $S_{1 / \sqrt{3}}^{3}$.
- The proof of the theorem is based on the approach of V. Dol'nikov, which was later developed by K. Swanepoel.
- The bound on r in the theorem is tight - for arbitrary $n \in N$ one can realize $K_{n, n}$ as a diameter graph on $S_{1 / \sqrt{2}}^{3}$.
- One can realize K_{4} as a diameter graph on the sphere $S_{\sqrt{3 / 8}}$ and K_{5} on the sphere $S_{\sqrt{2 / 5}}^{3}$.
- One can have two vertex-disjoint triangles in a diameter graph on $S_{1 / \sqrt{3}}^{3}$.

Number of edges in diameter and distance graphs

$D_{d}(l, n)$ - the maximum number of cliques of size l in a diameter graph on n vertices in \mathbb{R}^{d}.
$U_{d}(l, n)$ - the same for unit distance graphs in \mathbb{R}^{d}.
(A graph $G=(V, E)$ is a unit distance graph in \mathbb{R}^{d}, if $V \subset \mathbb{R}^{d}$ and E is formed by pairs of vertices that are at unit distance apart.)

Number of edges in diameter and distance graphs

$D_{d}(l, n)$ - the maximum number of cliques of size l in a diameter graph on n vertices in \mathbb{R}^{d}.
$U_{d}(l, n)$ - the same for unit distance graphs in \mathbb{R}^{d}.
(A graph $G=(V, E)$ is a unit distance graph in \mathbb{R}^{d}, if $V \subset \mathbb{R}^{d}$ and E is formed by pairs of vertices that are at unit distance apart.)

Number of edges in diameter and distance graphs

Question(P. Erdős, 1947): determine $U_{2}(2, n)$ (the maximum number of edges in a planar n-vertex unit distance graph).
(P. Erdős) For $d \geqslant 4$ we have $U_{d}(2, n), D_{d}(2, n) \sim \frac{\lfloor d / 2\rfloor-1}{2\lfloor d / 2\rfloor} n^{2}$.

Swanepoel, 2009: the exact value of $U_{d}(2, n)$ for even $d \geqslant 6$ and
sufficiently large n and of $D_{d}(2, n)$ for $d \geqslant 4$ and sufficiently large n

Number of edges in diameter and distance graphs

Question(P. Erdős, 1947): determine $U_{2}(2, n)$ (the maximum number of edges in a planar n-vertex unit distance graph).
(P. Erdős) For $d \geqslant 4$ we have $U_{d}(2, n), D_{d}(2, n) \sim \frac{\lfloor d / 2\rfloor-1}{2\lfloor d / 2\rfloor} n^{2}$.

Swanepoel, 2009: the exact value of $U_{d}(2, n)$ for even $d \geqslant 6$ and sufficiently large n and of $D_{d}(2, n)$ for $d \geqslant 4$ and sufficiently large n.

Number of edges in diameter and distance graphs

Question(P. Erdős, 1947): determine $U_{2}(2, n)$ (the maximum number of edges in a planar n-vertex unit distance graph).
(P. Erdős) For $d \geqslant 4$ we have $U_{d}(2, n), D_{d}(2, n) \sim \frac{\lfloor d / 2\rfloor-1}{2\lfloor d / 2\rfloor} n^{2}$.

Swanepoel, 2009: the exact value of $U_{d}(2, n)$ for even $d \geqslant 6$ and sufficiently large n and of $D_{d}(2, n)$ for $d \geqslant 4$ and sufficiently large n.

Schur's conjecture

Conjecture, Schur et. al.
We have $D_{d}(d, n)=n$ for $n \geqslant d+1$.
They verified it for $d=3$. For $d=2$ it is a result due to H. Hopf, E. Pannvitz.
F. Morić and J. Pach proved that it is true provided that any two d-cliques in the diameter graph in \mathbb{R}^{d} have at least $d-2$ vertices in common.

Coniecture F. Morić and J. Pach

Any two d-cliques in a diameter graph in \mathbb{R}^{d} must have at least $d-2$ vertices in common.

Schur's conjecture

Conjecture, Schur et. al.

We have $D_{d}(d, n)=n$ for $n \geqslant d+1$.
They verified it for $d=3$. For $d=2$ it is a result due to H . Hopf, E . Pannvitz.
F. Morić and J. Pach proved that it is true provided that any two d-cliques in the diameter graph in \mathbb{R}^{d} have at least $d-2$ vertices in common.

Conjecture, F. Morić and J. Pach
Any two d-cliques in a diameter graph in \mathbb{R}^{d} must have at least $d-2$ vertices in common.

Schur's conjecture

Conjecture, Schur et. al.

We have $D_{d}(d, n)=n$ for $n \geqslant d+1$.
They verified it for $d=3$. For $d=2$ it is a result due to H . Hopf, E . Pannvitz.
F. Morić and J. Pach proved that it is true provided that any two d-cliques in the diameter graph in \mathbb{R}^{d} have at least $d-2$ vertices in common.

Conjecture, F. Morić and J. Pach
Any two d-cliques in a diameter graph in \mathbb{R}^{d} must have at least $d-2$ vertices in common.

Schur's conjecture

Conjecture, Schur et. al.

We have $D_{d}(d, n)=n$ for $n \geqslant d+1$.
They verified it for $d=3$. For $d=2$ it is a result due to H. Hopf, E. Pannvitz.
F. Morić and J. Pach proved that it is true provided that any two d-cliques in the diameter graph in \mathbb{R}^{d} have at least $d-2$ vertices in common.

Conjecture, F. Morić and J. Pach

Any two d-cliques in a diameter graph in \mathbb{R}^{d} must have at least $d-2$ vertices in common.

Theorem 2 (AK, 2013)

(1) For $n \geqslant 52$ we have

$$
D_{4}(2, n)= \begin{cases}\lfloor n / 2\rfloor\lceil n / 2\rceil+\lceil n / 2\rceil+1, & \text { if } n \not \equiv 3 \bmod 4, \\ \lfloor n / 2\rfloor\lceil n / 2\rceil+\lceil n / 2\rceil, & \text { if } n \equiv 3 \bmod 4\end{cases}
$$

(this part of the theorem in case of sufficiently large n is due to K . Swanepoel).
(3) For all sufficiently large n we have

$$
D_{4}(3, n)= \begin{cases}(n-1)^{2} / 4+n, & \text { if } n \equiv 1 \bmod 4, \\ (n-1)^{2} / 4+n-1, & \text { if } n \equiv 3 \bmod 4, \\ n(n-2) / 4+n, & \text { if } n \equiv 0 \bmod 2\end{cases}
$$

(3) (Schur's conjecture in \mathbb{R}^{4}) For all $n \geqslant 5$ we have $D_{4}(4, n)=n$.

The main theorem

Theorem 2 (AK, 2013)

(1) For $n \geqslant 52$ we have

$$
D_{4}(2, n)= \begin{cases}\lfloor n / 2\rfloor\lceil n / 2\rceil+\lceil n / 2\rceil+1, & \text { if } n \not \equiv 3 \bmod 4 \\ \lfloor n / 2\rfloor\lceil n / 2\rceil+\lceil n / 2\rceil, & \text { if } n \equiv 3 \bmod 4\end{cases}
$$

(this part of the theorem in case of sufficiently large n is due to K. Swanepoel).
(2) For all sufficiently large n we have

$$
D_{4}(3, n)= \begin{cases}(n-1)^{2} / 4+n, & \text { if } n \equiv 1 \bmod 4 \\ (n-1)^{2} / 4+n-1, & \text { if } n \equiv 3 \bmod 4 \\ n(n-2) / 4+n, & \text { if } n \equiv 0 \bmod 2\end{cases}
$$

(3) (Schur's conjecture in $\left.\mathbb{R}^{4}\right)$ For all $n \geqslant 5$ we have $D_{4}(4, n)=n$.

Theorem 2 (AK, 2013)

(1) For $n \geqslant 52$ we have

$$
D_{4}(2, n)= \begin{cases}\lfloor n / 2\rfloor\lceil n / 2\rceil+\lceil n / 2\rceil+1, & \text { if } n \not \equiv 3 \bmod 4 \\ \lfloor n / 2\rfloor\lceil n / 2\rceil+\lceil n / 2\rceil, & \text { if } n \equiv 3 \bmod 4\end{cases}
$$

(this part of the theorem in case of sufficiently large n is due to K. Swanepoel).
(2) For all sufficiently large n we have

$$
D_{4}(3, n)= \begin{cases}(n-1)^{2} / 4+n, & \text { if } n \equiv 1 \bmod 4 \\ (n-1)^{2} / 4+n-1, & \text { if } n \equiv 3 \bmod 4 \\ n(n-2) / 4+n, & \text { if } n \equiv 0 \bmod 2\end{cases}
$$

(3) (Schur's conjecture in $\left.\mathbb{R}^{4}\right)$ For all $n \geqslant 5$ we have $D_{4}(4, n)=n$.

Ideas of the proof. Theorem 1, part 1.

- Decompose the graph into maximal complete bipartite subgraphs. Use Kővári-Sós-Turán theorem.
- Complete bipartite subgraphs lie on two orthogonal circles.
- There are "few" edges between the parts.
- By induction on the number of vertices show that in the extremal case there is only one (spanning) complete bipartite subgraph.

Ideas of the proof. Theorem 1, part 1.

- Decompose the graph into maximal complete bipartite subgraphs. Use Kővári-Sós-Turán theorem.
- Complete bipartite subgraphs lie on two orthogonal circles.
- There are "few" edges between the parts.
- By induction on the number of vertices show that in the extremal case there is only one (spanning) complete bipartite subgraph.
- Analyze the case with one spanning complete bipartite subgraph.

Ideas of the proof. Theorem 1, part 1.

- Decompose the graph into maximal complete bipartite subgraphs. Use Kővári-Sós-Turán theorem.
- Complete bipartite subgraphs lie on two orthogonal circles.
- There are "few" edges between the parts.
- By induction on the number of vertices show that in the extremal case there is only one (spanning) complete bipartite subgraph.
- Analyze the case with one spanning complete bipartite subgraph.

Ideas of the proof. Theorem 1, part 1.

- Decompose the graph into maximal complete bipartite subgraphs. Use Kővári-Sós-Turán theorem.
- Complete bipartite subgraphs lie on two orthogonal circles.
- There are "few" edges between the parts.
- By induction on the number of vertices show that in the extremal case there is only one (spanning) complete bipartite subgraph.
- Analyze the case with one spanning complete bipartite subgraph.

Ideas of the proof. Theorem 1, part 1.

- Decompose the graph into maximal complete bipartite subgraphs. Use Kővári-Sós-Turán theorem.
- Complete bipartite subgraphs lie on two orthogonal circles.
- There are "few" edges between the parts.
- By induction on the number of vertices show that in the extremal case there is only one (spanning) complete bipartite subgraph.
- Analyze the case with one spanning complete bipartite subgraph.

Ideas of the proof. Theorem 1 part 2.

- A more complicated analogue of the proof of part 1.
- Additionally, we use Theorem 1 to estimate the number of triangles containing one vertex and the total number of triangles.
- More complicated decomposition and analysis of the number of edges (and triangles) that go across the complete bipartite parts.

Ideas of the proof. Theorem 1 part 2.

- A more complicated analogue of the proof of part 1.
- Additionally, we use Theorem 1 to estimate the number of triangles containing one vertex and the total number of triangles.
- More complicated decomposition and analysis of the number of edges (and triangles) that go across the complete bipartite parts.

Ideas of the proof. Theorem 1 part 2.

- A more complicated analogue of the proof of part 1.
- Additionally, we use Theorem 1 to estimate the number of triangles containing one vertex and the total number of triangles.
- More complicated decomposition and analysis of the number of edges (and triangles) that go across the complete bipartite parts.

Ideas of the proof. Dolnikov's and Swanepoel's approach

We sketch the proof of the fact that any diameter graph G in \mathbb{R}^{3} on n vertices has at most $2 n-2$ edges. Moreover, any two odd cycles in G must share a vertex.

- Form the set of all directions of edges of a diameter graph. Each edge corresponds to two points on the sphere.
- Vertex v of $G \rightarrow$ two sets $R(v), B(v)$: diametrally opposite on the sphere, $R(v)$ is a spherical convex hull of the directions of edges going out from v

Ideas of the proof. Dolnikov's and Swanepoel's approach

We sketch the proof of the fact that any diameter graph G in \mathbb{R}^{3} on n vertices has at most $2 n-2$ edges. Moreover, any two odd cycles in G must share a vertex.

- Form the set of all directions of edges of a diameter graph. Each edge corresponds to two points on the sphere.
- Vertex v of $G \rightarrow$ two sets $R(v), B(v)$: diametrally opposite on the sphere, $R(v)$ is a spherical convex hull of the directions of edges going out from v.
- For distinct $u, v \in V(G)$ the sets $R(u), R(v)$ do not intersect. The same holds for $B(u), B(v)$. The sets $R(u), B(v)$ may share one vertex, this corresponds to an edge.

Ideas of the proof. Dolnikov's and Swanepoel's approach

We sketch the proof of the fact that any diameter graph G in \mathbb{R}^{3} on n vertices has at most $2 n-2$ edges. Moreover, any two odd cycles in G must share a vertex.

- Form the set of all directions of edges of a diameter graph. Each edge corresponds to two points on the sphere.
- Vertex v of $G \rightarrow$ two sets $R(v), B(v)$: diametrally opposite on the sphere, $R(v)$ is a spherical convex hull of the directions of edges going out from v.
- For distinct $u, v \in V(G)$ the sets $R(u), R(v)$ do not intersect. The same holds for $B(u), B(v)$. The sets $R(u), B(v)$ may share one vertex, this corresponds to an edge.
- Interpret the sets $R(u), B(v)$ as the vertices of a graph H and intersections between them as the edges. It is a planar bipartite graph, which is a double cover of the original graph.

Ideas of the proof. Dolnikov's and Swanepoel's approach

We sketch the proof of the fact that any diameter graph G in \mathbb{R}^{3} on n vertices has at most $2 n-2$ edges. Moreover, any two odd cycles in G must share a vertex.

- Form the set of all directions of edges of a diameter graph. Each edge corresponds to two points on the sphere.
- Vertex v of $G \rightarrow$ two sets $R(v), B(v)$: diametrally opposite on the sphere, $R(v)$ is a spherical convex hull of the directions of edges going out from v.
- For distinct $u, v \in V(G)$ the sets $R(u), R(v)$ do not intersect. The same holds for $B(u), B(v)$. The sets $R(u), B(v)$ may share one vertex, this corresponds to an edge.
- Interpret the sets $R(u), B(v)$ as the vertices of a graph H and intersections between them as the edges. It is a planar bipartite graph, which is a double cover of the original graph.
- Cycles in the original graphs \rightarrow self-symmetric closed connected curves on the sphere. They must intersect.

Ideas of the proof. Dolnikov's and Swanepoel's approach

We sketch the proof of the fact that any diameter graph G in \mathbb{R}^{3} on n vertices has at most $2 n-2$ edges. Moreover, any two odd cycles in G must share a vertex.

- Form the set of all directions of edges of a diameter graph. Each edge corresponds to two points on the sphere.
- Vertex v of $G \rightarrow$ two sets $R(v), B(v)$: diametrally opposite on the sphere, $R(v)$ is a spherical convex hull of the directions of edges going out from v.
- For distinct $u, v \in V(G)$ the sets $R(u), R(v)$ do not intersect. The same holds for $B(u), B(v)$. The sets $R(u), B(v)$ may share one vertex, this corresponds to an edge.
- Interpret the sets $R(u), B(v)$ as the vertices of a graph H and intersections between them as the edges. It is a planar bipartite graph, which is a double cover of the original graph.
- Cycles in the original graphs \rightarrow self-symmetric closed connected curves on the sphere. They must intersect.

Ideas of the proof. Dolnikov's and Swanepoel's approach

We sketch the proof of the fact that any diameter graph G in \mathbb{R}^{3} on n vertices has at most $2 n-2$ edges. Moreover, any two odd cycles in G must share a vertex.

- Form the set of all directions of edges of a diameter graph. Each edge corresponds to two points on the sphere.
- Vertex v of $G \rightarrow$ two sets $R(v), B(v)$: diametrally opposite on the sphere, $R(v)$ is a spherical convex hull of the directions of edges going out from v.
- For distinct $u, v \in V(G)$ the sets $R(u), R(v)$ do not intersect. The same holds for $B(u), B(v)$. The sets $R(u), B(v)$ may share one vertex, this corresponds to an edge.
- Interpret the sets $R(u), B(v)$ as the vertices of a graph H and intersections between them as the edges. It is a planar bipartite graph, which is a double cover of the original graph.
- Cycles in the original graphs \rightarrow self-symmetric closed connected curves on the sphere. They must intersect.

Open problems

- The proof of Schur's conjecture is the topic of Alexandr Polyanskiy's talk.
- Analogue of Theorem 1 for radii $\sqrt{3 / 8}<r<1 / \sqrt{2}$.
- Is it true that in a diameter graph in \mathbb{R}^{4} any two 4-chromatic subgraphs must share an edge?

Open problems

- The proof of Schur's conjecture is the topic of Alexandr Polyanskiy's talk.
- Analogue of Theorem 1 for radii $\sqrt{3 / 8}<r<1 / \sqrt{2}$.
- Is it true that in a diameter graph in \mathbb{R}^{4} any two 4-chromatic subgraphs must share an edge?
- How many edges there may be in a diameter graph in \mathbb{R}^{4} apart from the edges in its maximal complete bipartite subgraph? Is this quantity linear in the number of vertices?
- Borsuk's conjecture for finite sets in \mathbb{R}^{4} ?

Open problems

- The proof of Schur's conjecture is the topic of Alexandr Polyanskiy's talk.
- Analogue of Theorem 1 for radii $\sqrt{3 / 8}<r<1 / \sqrt{2}$.
- Is it true that in a diameter graph in \mathbb{R}^{4} any two 4-chromatic subgraphs must share an edge?
- How many edges there may be in a diameter graph in \mathbb{R}^{4} apart from the edges in its maximal complete bipartite subgraph? Is this quantity linear in the number of vertices?
- Borsuk's conjecture for finite sets in \mathbb{R}^{4} ?

Open problems

- The proof of Schur's conjecture is the topic of Alexandr Polyanskiy's talk.
- Analogue of Theorem 1 for radii $\sqrt{3 / 8}<r<1 / \sqrt{2}$.
- Is it true that in a diameter graph in \mathbb{R}^{4} any two 4-chromatic subgraphs must share an edge?
- How many edges there may be in a diameter graph in \mathbb{R}^{4} apart from the edges in its maximal complete bipartite subgraph? Is this quantity linear in the number of vertices?
- Borsuk's conjecture for finite sets in \mathbb{R}^{4} ?

Open problems

- The proof of Schur's conjecture is the topic of Alexandr Polyanskiy's talk.
- Analogue of Theorem 1 for radii $\sqrt{3 / 8}<r<1 / \sqrt{2}$.
- Is it true that in a diameter graph in \mathbb{R}^{4} any two 4-chromatic subgraphs must share an edge?
- How many edges there may be in a diameter graph in \mathbb{R}^{4} apart from the edges in its maximal complete bipartite subgraph? Is this quantity linear in the number of vertices?
- Borsuk's conjecture for finite sets in \mathbb{R}^{4} ?

[^0]: ${ }^{1}$ Ecole Polytechnique Fédérale de Lausanne, Moscow Institute of Physics and Technology.

