On random subgraphs of a Kneser graph

Andrey B. Kupavskii¹

Sum(m)it 240 06.07.2014 – 11.07.2014 Budapest, Hungary

¹École Polytechnique Fédérale de Lausanne, Moscow Institute of Physics and Technology.

э

Kneser graph $KG_{n,k}$, $k \leq n/2$: vertices are k-element subsets of [n], edges connect disjoint k-sets.

Introduced by M. Kneser in 1955, who conjectured that $\chi(KG_{n,k}) \leqslant n-2k+2.$

Conjecture was proved by L. Lovász in 1978 using topological methods.

Independence number (Erdős-Ko-Rado, 1961): $\alpha(KG_{n,k}) = \binom{n-1}{k-1}$.

물 네 물 네

Kneser graph $KG_{n,k}$, $k \leq n/2$: vertices are k-element subsets of [n], edges connect disjoint k-sets.

Introduced by M. Kneser in 1955, who conjectured that $\chi(KG_{n,k})\leqslant n-2k+2.$

Conjecture was proved by L. Lovász in 1978 using topological methods.

Independence number (Erdős-Ko-Rado, 1961): $\alpha(KG_{n,k}) = \binom{n-1}{k-1}$.

글 🕨 🔺 글 🕨 👘

Kneser graph $KG_{n,k}$, $k \leq n/2$: vertices are k-element subsets of [n], edges connect disjoint k-sets.

Introduced by M. Kneser in 1955, who conjectured that $\chi(KG_{n,k}) \leqslant n-2k+2.$

Conjecture was proved by L. Lovász in 1978 using topological methods.

Independence number (Erdős-Ko-Rado, 1961): $\alpha(KG_{n,k}) = \binom{n-1}{k-1}$.

Kneser graph $KG_{n,k}$, $k \leq n/2$: vertices are k-element subsets of [n], edges connect disjoint k-sets.

Introduced by M. Kneser in 1955, who conjectured that $\chi(KG_{n,k}) \leqslant n-2k+2.$

Conjecture was proved by L. Lovász in 1978 using topological methods.

Independence number (Erdős-Ko-Rado, 1961): $\alpha(KG_{n,k}) = \binom{n-1}{k-1}$.

Kneser graph $KG(\mathcal{A})$ for a system of k-sets $\mathcal{A} \subset {[n] \choose k}$: the vertices of $KG(\mathcal{A})$ are the elements of \mathcal{A} , edges connect disjoint k-sets.

Any such $KG(\mathcal{A})$ is an induced subgraph of $KG_{n,k}$.

Chromatic number of Kneser-type graphs:

- A. Schrijver, 1978: Schrijver graphs have the same chromatic number as Kneser graphs.
- V. Dol'nikov, 1981: General Knezer graphs $KG(\mathcal{A})$ and chromatic defect.

Kneser graph $KG(\mathcal{A})$ for a system of k-sets $\mathcal{A} \subset {[n] \choose k}$: the vertices of $KG(\mathcal{A})$ are the elements of \mathcal{A} , edges connect disjoint k-sets.

Any such $KG(\mathcal{A})$ is an induced subgraph of $KG_{n,k}$.

Chromatic number of Kneser-type graphs:

- A. Schrijver, 1978: Schrijver graphs have the same chromatic number as Kneser graphs.
- V. Dol'nikov, 1981: General Knezer graphs $KG(\mathcal{A})$ and chromatic defect.

Kneser graph $KG(\mathcal{A})$ for a system of k-sets $\mathcal{A} \subset {[n] \choose k}$: the vertices of $KG(\mathcal{A})$ are the elements of \mathcal{A} , edges connect disjoint k-sets.

Any such $KG(\mathcal{A})$ is an induced subgraph of $KG_{n,k}$.

Chromatic number of Kneser-type graphs:

- A. Schrijver, 1978: Schrijver graphs have the same chromatic number as Kneser graphs.
- V. Dol'nikov, 1981: General Knezer graphs $KG(\mathcal{A})$ and chromatic defect.

Random subgraphs of Kneser graphs.

Random graph KG_{n,k}(p): the set of vertices is the same as for $KG_{n,k}$, each edge from $KG_{n,k}$ is included in $KG_{n,k}(p)$ with probability p.

L. Bogolyubskiy, A. Gusev, M. Pyaderkin and A. Raigorodskii studied $\alpha(KG_{n,k}(p))$. Raigorodskii, B. Bollobás: For some choice of parameters n, k, p it is equal to $\alpha(KG_{n,k}) \left(=\binom{n-1}{k-1}\right)$ w.h.p.

We study the chromatic number of Kneser graphs. For a wide range of parameters it is w.h.p. very close to $\chi(KG_{n,k})$:

Theorem (AK, 2014)

1. If p is fixed, $l \in \mathbb{N}$, and $k \gg n^{\frac{3}{2l}}$, then w.h.p. $\chi(KG_{n,k}(p)) \ge \chi(KG_{n,k}) - 2l$.

2. If for some p = p(n) we have $k \gg n^{3/4}p^{-1/4} + (n^{1/2}\ln n)p^{-1/2}$, then w.h.p. $\chi(KG_{n,k}(p)) \ge \chi(KG_{n,k}) - 4$.

Random subgraphs of Kneser graphs.

Random graph KG_{n,k}(**p**): the set of vertices is the same as for $KG_{n,k}$, each edge from $KG_{n,k}$ is included in $KG_{n,k}(p)$ with probability p.

L. Bogolyubskiy, A. Gusev, M. Pyaderkin and A. Raigorodskii studied $\alpha(KG_{n,k}(p))$. Raigorodskii, B. Bollobás: For some choice of parameters n, k, p it is equal to $\alpha(KG_{n,k}) \left(=\binom{n-1}{k-1}\right)$ w.h.p.

We study the chromatic number of Kneser graphs. For a wide range of parameters it is w.h.p. very close to $\chi(KG_{n,k})$:

Theorem (AK, 2014)

1. If p is fixed, $l \in \mathbb{N}$, and $k \gg n^{\frac{3}{2l}}$, then w.h.p. $\chi(KG_{n,k}(p)) \ge \chi(KG_{n,k}) - 2l$. 2. If for some p = p(n) we have $k \gg n^{3/4}p^{-1/4} + (n^{1/2}\ln n)p^{-1/2}$, then w.h.p. $\chi(KG_{n,k}(p)) \ge \chi(KG_{n,k}) - 4$.

きょう そうよ

Random subgraphs of Kneser graphs.

Random graph KG_{n,k}(p): the set of vertices is the same as for $KG_{n,k}$, each edge from $KG_{n,k}$ is included in $KG_{n,k}(p)$ with probability p.

L. Bogolyubskiy, A. Gusev, M. Pyaderkin and A. Raigorodskii studied $\alpha(KG_{n,k}(p))$. Raigorodskii, B. Bollobás: For some choice of parameters n, k, p it is equal to $\alpha(KG_{n,k}) \left(=\binom{n-1}{k-1}\right)$ w.h.p.

We study the chromatic number of Kneser graphs. For a wide range of parameters it is w.h.p. very close to $\chi(KG_{n,k})$:

Theorem (AK, 2014)

1. If p is fixed, $l \in \mathbb{N}$, and $k \gg n^{\frac{3}{2l}}$, then w.h.p. $\chi(KG_{n,k}(p)) \ge \chi(KG_{n,k}) - 2l$. 2. If for some p = p(n) we have $k \gg n^{3/4}p^{-1/4} + (n^{1/2}\ln n)p^{-1/2}$, then w.h.p. $\chi(KG_{n,k}(p)) \ge \chi(KG_{n,k}) - 4$.

글 🕨 🔺 글 🕨 👘

Put d = n - 2k - 2l + 1. Roughly speaking, we show that in $KG_{n,k}$ there is a "small" amount of pairs of "big" subsets M^+, M^- , such that in any coloring of vertices of $KG_{n,k}$ in d colors one of the pairs form a monochromatic bipartite subgraph.

Fix a map from [n] to the sphere S^d in general position (no d+1 points lie in a diametral sphere).

Estimate the probability of the following event A: for some diametral hyperplane π there are two "big" sets M^+, M^- in two opposite hemispheres such that there is no edge between M^+ and M^- in $KG_{n,k}(p)$.

Put d = n - 2k - 2l + 1. Roughly speaking, we show that in $KG_{n,k}$ there is a "small" amount of pairs of "big" subsets M^+, M^- , such that in any coloring of vertices of $KG_{n,k}$ in d colors one of the pairs form a monochromatic bipartite subgraph.

Fix a map from [n] to the sphere S^d in general position (no d+1 points lie in a diametral sphere).

Estimate the probability of the following event A: for some diametral hyperplane π there are two "big" sets M^+, M^- in two opposite hemispheres such that there is no edge between M^+ and M^- in $KG_{n,k}(p)$.

Put d = n - 2k - 2l + 1. Roughly speaking, we show that in $KG_{n,k}$ there is a "small" amount of pairs of "big" subsets M^+, M^- , such that in any coloring of vertices of $KG_{n,k}$ in d colors one of the pairs form a monochromatic bipartite subgraph.

Fix a map from [n] to the sphere S^d in general position (no d + 1 points lie in a diametral sphere).

Estimate the probability of the following event A: for some diametral hyperplane π there are two "big" sets M^+, M^- in two opposite hemispheres such that there is no edge between M^+ and M^- in $KG_{n,k}(p).$

Put d = n - 2k - 2l + 1. Roughly speaking, we show that in $KG_{n,k}$ there is a "small" amount of pairs of "big" subsets M^+, M^- , such that in any coloring of vertices of $KG_{n,k}$ in d colors one of the pairs form a monochromatic bipartite subgraph.

Fix a map from [n] to the sphere S^d in general position (no d + 1 points lie in a diametral sphere).

Estimate the probability of the following event A: for some diametral hyperplane π there are two "big" sets M^+, M^- in two opposite hemispheres such that there is no edge between M^+ and M^- in $KG_{n,k}(p)$.

Fix a coloring of vertices of $KG_{n,k}$ in d colors.

Construct an auxiliary covering of the sphere S^d by sets B_0, \ldots, B_d . Point x goes to the part B_i , $1 \le i \le d$, if in the open hemisphere with the center in x there are at least k + l points of [n] and color i is the most popular color in the coloring of the k-sets that lie wholly in that hemisphere.

If some colors i, j are equally popular, then add point x to both sets B_i, B_j .

All the rest goes to B_0 .

Fix a coloring of vertices of $KG_{n,k}$ in d colors.

Construct an auxiliary covering of the sphere S^d by sets B_0, \ldots, B_d . Point x goes to the part B_i , $1 \le i \le d$, if in the open hemisphere with the center in x there are at least k + l points of [n] and color i is the most popular color in the coloring of the k-sets that lie wholly in that hemisphere.

If some colors i, j are equally popular, then add point x to both sets B_i, B_j .

All the rest goes to B_0 .

4 3 b

Fix a coloring of vertices of $KG_{n,k}$ in d colors.

Construct an auxiliary covering of the sphere S^d by sets B_0, \ldots, B_d . Point x goes to the part B_i , $1 \leq i \leq d$, if in the open hemisphere with the center in x there are at least k + l points of [n] and color i is the most popular color in the coloring of the k-sets that lie wholly in that hemisphere.

If some colors i, j are equally popular, then add point x to both sets B_i, B_j .

All the rest goes to B_0 .

Fix a coloring of vertices of $KG_{n,k}$ in d colors.

Construct an auxiliary covering of the sphere S^d by sets B_0, \ldots, B_d . Point x goes to the part B_i , $1 \leq i \leq d$, if in the open hemisphere with the center in x there are at least k + l points of [n] and color i is the most popular color in the coloring of the k-sets that lie wholly in that hemisphere.

If some colors i,j are equally popular, then add point x to both sets B_i, B_j .

All the rest goes to B_0 .

프 (프)

Fix a coloring of vertices of $KG_{n,k}$ in d colors.

Construct an auxiliary covering of the sphere S^d by sets B_0, \ldots, B_d . Point x goes to the part B_i , $1 \leq i \leq d$, if in the open hemisphere with the center in x there are at least k + l points of [n] and color i is the most popular color in the coloring of the k-sets that lie wholly in that hemisphere.

If some colors i,j are equally popular, then add point x to both sets B_i, B_j .

All the rest goes to B_0 .

★ 글 ▶ - 글

Whenever the sphere S^d is covered by sets S_1, \ldots, S_{d+1} , each S_i is either open or closed, there exists *i* such that $S_i \cap (-S_i) \neq \emptyset$.

There are two antipodal points that are in the same set B_i . It cannot be B_0 because of the general position property.

Two sets of k-sets of color i in two opposite hemispheres form sets M^+, M^- . Since property A does not hold, there is an edge between them. Thus, the coloring is not proper.

The size of M^+, M^- we can get that way is at least ${k+l \choose k}/d.$

Whenever the sphere S^d is covered by sets S_1, \ldots, S_{d+1} , each S_i is either open or closed, there exists *i* such that $S_i \cap (-S_i) \neq \emptyset$.

There are two antipodal points that are in the same set B_i . It cannot be B_0 because of the general position property.

Two sets of k-sets of color i in two opposite hemispheres form sets M^+, M^- . Since property A does not hold, there is an edge between them. Thus, the coloring is not proper.

```
The size of M^+, M^- we can get that way is at least {k+l \choose k}/d.
```

医下子 医下

Whenever the sphere S^d is covered by sets S_1, \ldots, S_{d+1} , each S_i is either open or closed, there exists *i* such that $S_i \cap (-S_i) \neq \emptyset$.

There are two antipodal points that are in the same set B_i . It cannot be B_0 because of the general position property.

Two sets of k-sets of color i in two opposite hemispheres form sets M^+, M^- . Since property A does not hold, there is an edge between them. Thus, the coloring is not proper.

The size of M^+, M^- we can get that way is at least $\binom{k+l}{k}/d$.

-

Whenever the sphere S^d is covered by sets S_1, \ldots, S_{d+1} , each S_i is either open or closed, there exists *i* such that $S_i \cap (-S_i) \neq \emptyset$.

There are two antipodal points that are in the same set B_i . It cannot be B_0 because of the general position property.

Two sets of k-sets of color i in two opposite hemispheres form sets M^+, M^- . Since property A does not hold, there is an edge between them. Thus, the coloring is not proper.

The size of M^+, M^- we can get that way is at least $\binom{k+l}{k}/d$.

-

- Can we prove w.h.p. $\chi(KG_{n,k}(p)) = \chi(KG_{n,k})$ for p < 1 and some k = k(n)?
- Is it possible to use Lovász-type approach (neighborhood complexes and such) to get a similar result?

물 네 물 네

- Can we prove w.h.p. $\chi(KG_{n,k}(p)) = \chi(KG_{n,k})$ for p < 1 and some k = k(n)?
- Is it possible to use Lovász-type approach (neighborhood complexes and such) to get a similar result?

Andrey B. Kupavskii

On random subgraphs of a Kneser graph

き めくぐ

< ≣⇒