On random subgraphs of a Kneser graph

Andrey B. Kupavskii ${ }^{1}$

Sum(m)it 240
06.07.2014-11.07.2014
Budapest, Hungary

[^0]
Kneser graph

Kneser graph

Kneser graph $K G_{n, k}, k \leqslant n / 2$: vertices are k-element subsets of $[n]$, edges connect disjoint k-sets.

Introduced by M. Kneser in 1955, who conjectured that
$\chi\left(K G_{n, k}\right) \leqslant n-2 k+2$.

Conjecture was proved by L. Lovász in 1978 using topological methods.

Independence number (Erdős-Ko-Rado, 1961):

Kneser graph

Kneser graph

Kneser graph $K G_{n, k}, k \leqslant n / 2$: vertices are k-element subsets of $[n]$, edges connect disjoint k-sets.

Introduced by M. Kneser in 1955, who conjectured that $\chi\left(K G_{n, k}\right) \leqslant n-2 k+2$.

Conjecture was proved by L. Lovász in 1978 using topological methods.
Independence number (Erdős-Ko-Rado, 1961): $\alpha\left(K G_{n, k}\right)=\binom{n-1}{k-1}$

Kneser graph

Kneser graph

Kneser graph $K G_{n, k}, k \leqslant n / 2$: vertices are k-element subsets of $[n]$, edges connect disjoint k-sets.

Introduced by M. Kneser in 1955, who conjectured that $\chi\left(K G_{n, k}\right) \leqslant n-2 k+2$.

Conjecture was proved by L. Lovász in 1978 using topological methods.
Independence number (Erdős-Ko-Rado, 1961): $\alpha\left(K G_{n, k}\right)=\binom{n-1}{k-1}$.

Kneser graph

Kneser graph

Kneser graph $K G_{n, k}, k \leqslant n / 2$: vertices are k-element subsets of $[n]$, edges connect disjoint k-sets.

Introduced by M. Kneser in 1955, who conjectured that $\chi\left(K G_{n, k}\right) \leqslant n-2 k+2$.

Conjecture was proved by L. Lovász in 1978 using topological methods.
Independence number (Erdős-Ko-Rado, 1961): $\alpha\left(K G_{n, k}\right)=\binom{n-1}{k-1}$.

Chromatic number of Kneser-type graphs

Kneser graph $K G(\mathcal{A})$ for a system of k-sets $\mathcal{A} \subset\binom{[n]}{k}$: the vertices of $K G(\mathcal{A})$ are the elements of \mathcal{A}, edges connect disjoint k-sets.

Any such $K G(\mathcal{A})$ is an induced subgraph of $K G_{n, k}$.
Chromatic number of Kneser-type graphs:

- A. Schrijver, 1978: Schrijver graphs have the same chromatic number as Kneser graphs.
- V. Dol'nikov, 1981: General Knezer graphs $K G(\mathcal{A})$ and chromatic defect.

Chromatic number of Kneser-type graphs

Kneser graph $K G(\mathcal{A})$ for a system of k-sets $\mathcal{A} \subset\binom{[n]}{k}$: the vertices of $K G(\mathcal{A})$ are the elements of \mathcal{A}, edges connect disjoint k-sets.

Any such $K G(\mathcal{A})$ is an induced subgraph of $K G_{n, k}$.
Chromatic number of Kneser-type graphs:

- A. Schrijver, 1978: Schrijver graphs have the same chromatic number as Kneser graphs.
- V. Dol'nikov, 1981: General Knezer graphs $K G(\mathcal{A})$ and chromatic defect.

Chromatic number of Kneser-type graphs

Kneser graph $K G(\mathcal{A})$ for a system of k-sets $\mathcal{A} \subset\binom{[n]}{k}$: the vertices of $K G(\mathcal{A})$ are the elements of \mathcal{A}, edges connect disjoint k-sets.

Any such $K G(\mathcal{A})$ is an induced subgraph of $K G_{n, k}$.
Chromatic number of Kneser-type graphs:

- A. Schrijver, 1978: Schrijver graphs have the same chromatic number as Kneser graphs.
- V. Dol'nikov, 1981: General Knezer graphs $K G(\mathcal{A})$ and chromatic defect.

Random subgraphs of Kneser graphs.

Random $\operatorname{graph} \mathbf{K G}_{\mathbf{n}, \mathbf{k}}(\mathbf{p})$: the set of vertices is the same as for $K G_{n, k}$, each edge from $K G_{n, k}$ is included in $K G_{n, k}(p)$ with probability p.

We study the chromatic number of Kneser graphs. For a wide range of parameters it is w.h.p. very close to $\chi\left(K G_{n, k}\right)$

Theorem (AK, 2014)

Random subgraphs of Kneser graphs.

Random graph $\mathbf{K G}_{\mathbf{n}, \mathbf{k}}(\mathbf{p})$: the set of vertices is the same as for $K G_{n, k}$, each edge from $K G_{n, k}$ is included in $K G_{n, k}(p)$ with probability p.
L. Bogolyubskiy, A. Gusev, M. Pyaderkin and A. Raigorodskii studied $\alpha\left(K G_{n, k}(p)\right)$. Raigorodskii, B. Bollobás: For some choice of parameters n, k, p it is equal to $\alpha\left(K G_{n, k}\right)\left(=\binom{n-1}{k-1}\right)$ w.h.p.

We study the chromatic number of Kneser graphs. For a wide range of parameters it is w.h.p. very close to $\chi\left(K G_{n, k}\right)$:

Theorem (AK, 2014)

1. If p is fixed, $l \in \mathbb{N}$, and $k \gg n^{\frac{3}{2 l}}$,
then w.h.p. $\chi\left(K G_{n, k}(p)\right) \geqslant \chi\left(K G_{n, k}\right)-2 l$
2. If for some $p=p(n)$ we have $k \gg n^{3 / 4} p^{-1 / 4}+\left(n^{1 / 2} \ln n\right) p^{-1 / 2}$
then w.h.p. $\chi\left(K G_{n, k}(p)\right) \geqslant \chi\left(K G_{n, k}\right)-4$.

Random subgraphs of Kneser graphs.

Random graph $\mathbf{K G}_{\mathbf{n}, \mathbf{k}}(\mathbf{p})$: the set of vertices is the same as for $K G_{n, k}$, each edge from $K G_{n, k}$ is included in $K G_{n, k}(p)$ with probability p.
L. Bogolyubskiy, A. Gusev, M. Pyaderkin and A. Raigorodskii studied $\alpha\left(K G_{n, k}(p)\right)$. Raigorodskii, B. Bollobás: For some choice of parameters n, k, p it is equal to $\alpha\left(K G_{n, k}\right)\left(=\binom{n-1}{k-1}\right)$ w.h.p.

We study the chromatic number of Kneser graphs. For a wide range of parameters it is w.h.p. very close to $\chi\left(K G_{n, k}\right)$:

Theorem (AK, 2014)

1. If p is fixed, $l \in \mathbb{N}$, and $k \gg n^{\frac{3}{2 l}}$, then w.h.p. $\chi\left(K G_{n, k}(p)\right) \geqslant \chi\left(K G_{n, k}\right)-2 l$.
2. If for some $p=p(n)$ we have $k \gg n^{3 / 4} p^{-1 / 4}+\left(n^{1 / 2} \ln n\right) p^{-1 / 2}$, then w.h.p. $\chi\left(K G_{n, k}(p)\right) \geqslant \chi\left(K G_{n, k}\right)-4$.

Sketch of the proof. Part 1

Based on the proof of $\chi\left(K G_{n, k}\right)=n-2 k+2$ by J. Greene.
Put $d=n-2 k-2 l+1$. Roughly speaking, we show that in $K G_{n, k}$ there is a "small" amount of pairs of "big" subsets M^{+}, M^{-}, such that in any coloring of vertices of $K G_{n, k}$ in d colors one of the pairs form a monochromatic bipartite subgraph.

Fix a map from $[n]$ to the sphere S^{d} in general position (no $d+1$ points lie in a diametral sphere).

Estimate the probability of the following event A : for some diametral
hyperplane π there are two "big" sets M^{+}, M^{-}in two opposite
hemispheres such that there is no edge between M^{+}and M^{-}in

Sketch of the proof. Part 1

Based on the proof of $\chi\left(K G_{n, k}\right)=n-2 k+2$ by J. Greene.
Put $d=n-2 k-2 l+1$. Roughly speaking, we show that in $K G_{n, k}$ there is a "small" amount of pairs of "big" subsets M^{+}, M^{-}, such that in any coloring of vertices of $K G_{n, k}$ in d colors one of the pairs form a monochromatic bipartite subgraph.

Fix a map from $[n]$ to the sphere S^{d} in general position (no $d+1$ points lie in a diametral sphere).

Estimate the probability of the following event A : for some diametral
hyperplane π there are two "big" sets M^{+}, M^{-}in two opposite
hemispheres such that there is no edge between M^{+}and M^{-}in

Sketch of the proof. Part 1

Based on the proof of $\chi\left(K G_{n, k}\right)=n-2 k+2$ by J. Greene.
Put $d=n-2 k-2 l+1$. Roughly speaking, we show that in $K G_{n, k}$ there is a "small" amount of pairs of "big" subsets M^{+}, M^{-}, such that in any coloring of vertices of $K G_{n, k}$ in d colors one of the pairs form a monochromatic bipartite subgraph.

Fix a map from $[n]$ to the sphere S^{d} in general position (no $d+1$ points lie in a diametral sphere).

> Estimate the probability of the following event A : for some diametral hyperplane π there are two "big" sets M^{+}, M^{-}in two opposite hemispheres such that there is no edge between M^{+}and M^{-}in $K G_{n, k}(p)$.

Sketch of the proof. Part 1

Based on the proof of $\chi\left(K G_{n, k}\right)=n-2 k+2$ by J. Greene.
Put $d=n-2 k-2 l+1$. Roughly speaking, we show that in $K G_{n, k}$ there is a "small" amount of pairs of "big" subsets M^{+}, M^{-}, such that in any coloring of vertices of $K G_{n, k}$ in d colors one of the pairs form a monochromatic bipartite subgraph.

Fix a map from $[n]$ to the sphere S^{d} in general position (no $d+1$ points lie in a diametral sphere).

Estimate the probability of the following event A : for some diametral hyperplane π there are two "big" sets M^{+}, M^{-}in two opposite hemispheres such that there is no edge between M^{+}and M^{-}in $K G_{n, k}(p)$.

Sketch of the proof. Part 2

Show that A w.h.p. does not hold. Fix a graph for which the property A doesn't hold. Next, show that in any coloring of vertices of $K G_{n, k}$ in d colors there are two monochromatic sets M^{+}and M^{-}.

Fix a coloring of vertices of $K G_{n, k}$ in d colors.
Construct an auxiliary covering of the sphere S^{d} by sets B_{0}, \ldots, B_{d} Point x goes to the part $B_{i}, 1 \leqslant i \leqslant d$, if in the open hemisphere with the center in x there are at least $k+l$ points of $[n]$ and color i is the most popular color in the coloring of the k-sets that lie wholly in that hemisphere.

[^1]
Sketch of the proof. Part 2

Show that A w.h.p. does not hold. Fix a graph for which the property A doesn't hold. Next, show that in any coloring of vertices of $K G_{n, k}$ in d colors there are two monochromatic sets M^{+}and M^{-}.

Fix a coloring of vertices of $K G_{n, k}$ in d colors.

> Construct an auxiliary covering of the sphere S^{d} by sets B_{0}, \ldots, B_{d}. Point x goes to the part $B_{i}, 1 \leqslant i \leqslant d$, if in the open hemisphere with the center in x there are at least $k+l$ points of $[n]$ and color i is the most popular color in the coloring of the k-sets that lie wholly in that hemisphere.

If some colors i, j are equally popular, then add point x to both sets B_{i}, B_{i}

All the rest goes to B_{0}

Sketch of the proof. Part 2

Show that A w.h.p. does not hold. Fix a graph for which the property A doesn't hold. Next, show that in any coloring of vertices of $K G_{n, k}$ in d colors there are two monochromatic sets M^{+}and M^{-}.

Fix a coloring of vertices of $K G_{n, k}$ in d colors.
Construct an auxiliary covering of the sphere S^{d} by sets B_{0}, \ldots, B_{d}. Point x goes to the part $B_{i}, 1 \leqslant i \leqslant d$, if in the open hemisphere with the center in x there are at least $k+l$ points of $[n]$ and color i is the most popular color in the coloring of the k-sets that lie wholly in that hemisphere.

If some colors i, j are equally popular, then add point x to both sets B_{i}, B_{j}

All the rest goes to B_{0}.

Sketch of the proof. Part 2

Show that A w.h.p. does not hold. Fix a graph for which the property A doesn't hold. Next, show that in any coloring of vertices of $K G_{n, k}$ in d colors there are two monochromatic sets M^{+}and M^{-}.

Fix a coloring of vertices of $K G_{n, k}$ in d colors.
Construct an auxiliary covering of the sphere S^{d} by sets B_{0}, \ldots, B_{d}. Point x goes to the part $B_{i}, 1 \leqslant i \leqslant d$, if in the open hemisphere with the center in x there are at least $k+l$ points of $[n]$ and color i is the most popular color in the coloring of the k-sets that lie wholly in that hemisphere.

If some colors i, j are equally popular, then add point x to both sets B_{i}, B_{j}.

All the rest goes to B_{0}.

Sketch of the proof. Part 2

Show that A w.h.p. does not hold. Fix a graph for which the property A doesn't hold. Next, show that in any coloring of vertices of $K G_{n, k}$ in d colors there are two monochromatic sets M^{+}and M^{-}.

Fix a coloring of vertices of $K G_{n, k}$ in d colors.
Construct an auxiliary covering of the sphere S^{d} by sets B_{0}, \ldots, B_{d}. Point x goes to the part $B_{i}, 1 \leqslant i \leqslant d$, if in the open hemisphere with the center in x there are at least $k+l$ points of $[n]$ and color i is the most popular color in the coloring of the k-sets that lie wholly in that hemisphere.

If some colors i, j are equally popular, then add point x to both sets B_{i}, B_{j}.

All the rest goes to B_{0}.

Sketch of the proof. Part 3

> Theorem (Lusternik, Schnirelman 1930; Borsuk-Ulam 1933)
> Whenever the sphere S^{d} is covered by sets S_{1}, \ldots, S_{d+1}, each S_{i} is either open or closed, there exists i such that $S_{i} \cap\left(-S_{i}\right) \neq \emptyset$.

> There are two antipodal points that are in the same set B_{i}. It cannot be B_{0} because of the general position property.

> Two sets of k-sets of color i in two opposite hemispheres form sets M^{+}, M^{-}. Since property A does not hold, there is an edge between them. Thus, the coloring is not proper.

> The size of M^{+}, M^{-}we can get that way is at least

Sketch of the proof. Part 3

Theorem (Lusternik, Schnirelman 1930; Borsuk-Ulam 1933)

Whenever the sphere S^{d} is covered by sets S_{1}, \ldots, S_{d+1}, each S_{i} is either open or closed, there exists i such that $S_{i} \cap\left(-S_{i}\right) \neq \emptyset$.

There are two antipodal points that are in the same set B_{i}. It cannot be B_{0} because of the general position property.

Two sets of k-sets of color i in two opposite hemispheres form sets M^{+}, M^{-}. Since property A does not hold, there is an edge between them. Thus, the coloring is not proper.

The size of M^{+}, M^{-}we can get that way is at least $\binom{k+l}{k} / d$

Sketch of the proof. Part 3

Theorem (Lusternik, Schnirelman 1930; Borsuk-Ulam 1933)

Whenever the sphere S^{d} is covered by sets S_{1}, \ldots, S_{d+1}, each S_{i} is either open or closed, there exists i such that $S_{i} \cap\left(-S_{i}\right) \neq \emptyset$.

There are two antipodal points that are in the same set B_{i}. It cannot be B_{0} because of the general position property.

Two sets of k-sets of color i in two opposite hemispheres form sets M^{+}, M^{-}. Since property A does not hold, there is an edge between them. Thus, the coloring is not proper.

The size of M^{+}, M^{-}we can get that way is at least $\binom{k+l}{k} / d$.

Sketch of the proof. Part 3

Theorem (Lusternik, Schnirelman 1930; Borsuk-Ulam 1933)

Whenever the sphere S^{d} is covered by sets S_{1}, \ldots, S_{d+1}, each S_{i} is either open or closed, there exists i such that $S_{i} \cap\left(-S_{i}\right) \neq \emptyset$.

There are two antipodal points that are in the same set B_{i}. It cannot be B_{0} because of the general position property.

Two sets of k-sets of color i in two opposite hemispheres form sets M^{+}, M^{-}. Since property A does not hold, there is an edge between them. Thus, the coloring is not proper.

The size of M^{+}, M^{-}we can get that way is at least $\binom{k+l}{k} / d$.

Open problems

- Can we prove w.h.p. $\chi\left(K G_{n, k}(p)\right)=\chi\left(K G_{n, k}\right)$ for $p<1$ and some $k=k(n)$?
- Is it possible to use Lovász-type approach (neighborhood complexes and such) to get a similar result?

Open problems

- Can we prove w.h.p. $\chi\left(K G_{n, k}(p)\right)=\chi\left(K G_{n, k}\right)$ for $p<1$ and some $k=k(n)$?
- Is it possible to use Lovász-type approach (neighborhood complexes and such) to get a similar result?

Andrey B. Kupavskii
On random subgraphs of a Kneser graph

[^0]: ${ }^{1}$ École Polytechnique Fédérale de Lausanne, Moscow Institute of Physics and Technology.

[^1]: If some colors i, j are equally popular, then add point x to both sets

