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Diameter graphs

Diameter graph

A graph G = (V ,E ) is a diameter graph in Rd (or on Sd
r ) if V ⊂ Rd

(Sd
r ), V is finite, diamV = 1 and

E ⊆ {(x , y), x , y ∈ Rd(Sd
r ), |x − y | = 1},

where |x − y | denotes the Euclidean distance between x and y .



Borsuk’s problem

Borsuk’s problem: is it true that any bounded set in Rd can be
partitioned into d + 1 parts of strictly smaller diameter?

The finite version of Borsuk’s problem

Is it true that any diameter graph G in Rd satisfies χ(G ) ≤ d + 1?

1955, H. Eggleston, true for d = 3.
1993, J. Kahn, G. Kalai, false for d = 1325, d ≥ 2016.

2013, A. Bondarenko, false for d ≥ 65.

2013, T. Jenrich, false for d ≥ 64.



Main questions

Conjecture 1 (Schur et.al., 2003)

Any diameter graph G on n vertices in Rd has at most n d-cliques.

Theorem 1 (Morić, Pach, 2013): Conjecture 1 holds for diameter graphs
G in Rd such that any two d-cliques in G share at least (d − 2) vertices.

Conjecture 2 (Morić, Pach, 2012)

Any two d-cliques in a diameter graph in Rd must share at least (d − 2)
vertices.
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Conjecture 2 (Morić, Pach, 2012)
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vertices.

It was proved for R3 by V.L. Dol’nikov in 2001.

Theorem 1 (Kupavskii, AP 2013)

Any two d-cliques in a diameter graph in Rd(on Sd
r , r > 1/

√
2) must

share at least (d − 2) vertices.

Theorem 1’ (Kupavskii, AP 2013)

Any two d-cliques in a diameter graph in Rd(on Sd
r , r > 1/
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2), d > 3,

must share a vertex.
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Any two d-cliques in a diameter graph in Rd must share at least (d − 2)
vertices.

It was proved for R3 by V.L. Dol’nikov in 2001.

Theorem 1 (Kupavskii, AP 2013)

Any two d-cliques in a diameter graph in Rd(on Sd
r , r > 1/

√
2) must

share at least (d − 2) vertices.

Theorem 1’ (Kupavskii, AP 2013)

Any two d-cliques in a diameter graph in Rd(on Sd
r , r > 1/

√
2), d > 3,

must share a vertex.



How to obtain Theorem 1 out of Theorem 1’

Consider two d-cliques in a diameter graph in Rd (or on Sd
r with

r > 1/
√

2).

By Theorem 1’ they have a common vertex.
Therefore all the remaining vertices of the two d-cliques must lie on
the (d − 1)-dimensional unit sphere S with the center in the
common vertex of the two d-cliques
The graph on S is a spherical diameter graph and the vertices on S
form two (d − 1)-cliques.
By Theorem 1’ these two (d − 1)-cliques share a common vertex.
Continue by induction.
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Sketch of the proof Theorem 1’ for Rd

For R3 and S3 Theorem 1’ was proved by V.L. Dol’nikov and A.
Kupavskii.

Assume that in a diameter graph in Rd there are two d-cliques K1,
K2 that do not have a common vertex.
Consider the (d − 1)-dimensional sphere S with the center in the
center of the clique K1 and with radius of the circumscribed sphere
of K1.
Case 1. All vertices of K2 lie inside S . It’s a simple case.
Case 2. One vertex of K2 lies outside S , all the rest lie inside S .
What to do: rotate K1 and reduce to the inductive assumption.
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Remark on Maehara’s results

Unit neighborhood graph

A graph G = (V ,E ) is a unit neighborhood graph in Rd if V ⊂ Rd is a
finite set and

E = {xy , where x 6= y ∈ V , |x − y | 6 1}.

Sphericity

For a graph G , the sphericity of G (sphG) is the minimum dimension d
such that G is isomorphic to a unit neighborhood graph in Rd .

Theorem 2 (Maehara 1987)

sphKd,d > d .

Approach: consider circumscribed spheres and use induction.
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Other conjectures and results

Conjecture 2 (Kupavskii, AP 2014)

Two cliques in a diameter graph in Rd , one on d + 1 vertices, the other
on b d+1

2 c+ 1 vertices, either they share a vertex.

Remark: b d+1
2 c+ 1 can’t be replaced by l = b d+1

2 c in Conjecture 2.

Reuleaux simplex

A Reuleaux simplex ∆ in Rd is a set formed by the intersection of the
balls Bi = Bd

1 (vi ) of unit radius with centers in vi , i = 1, . . . , d + 1,
where vi are the vertices of a unit simplex in Rd .

Example to the remark: Consider midpoints of some l pairwise disjoint
arcs that connect the vertices of the Reuleaux simplex.
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Other conjectures and results

Theorem 3 (Kupavskii, AP 2014)

Conjecture 2 holds for d = 4.

Approach: divide the Reuleaux simplex into 3 parts and shift points that
are inside of one of the parts.

Conjecture 2’ (Kupavskii, AP 2014)

Two simplices in a diameter graph in Rd , one on d + 1 vertices, the other
on d − 1 vertices, either they share a vertex.
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Problems

Problem 1 (Morić and Pach)

For a given d , characterize all pairs k , l of integers such that for any set
of k red and l blue points in Rd we can choose a red point r and a blue
point b such that ‖r − b‖ is at least as large as (strictly greater than) the
smallest distance between two points of the same color.

Problem 1’
For a given d , characterize all pairs k, l of integers such that any k-clique
and any l-clique in any diameter graph in Rd must share a vertex.
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