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Two definitions

There are two well-known definitions of distance graphs. The first one is
the following:

Complete distance graphs

We say that a graph G = (V,E) is a complete (unit) distance graph in
Rd if V ⊂ Rd and E = {(x, y), x, y ∈ Rd, |x− y| = 1}.

The second one is slightly different:

Distance graphs

We say that a graph G = (V,E) is a (unit) distance graph in Rd if it is a
subgraph of some complete distance graph in Rd.
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Motivation. Erdős on unit distances

In 1946 Erdős asked the following question:

How many can there be unit distances among n points on the plane?

In 1965 Erdős, Harary and Tutte introduced the concept of the Euclidean
dimension:

Euclidean dimension dimG of a graph G is the minimum dimension d so
that the graph G is isomorphic to some distance graph in Rd.
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Motivation. Hadwiger-Nelson problem

The following question was asked by E. Nelson in 1950:

What is the minimum number of colors needed to color the points of the
plane so that no two points at unit distance apart receive the same color?

This quantity is called the chromatic number χ(R2) of the plane.
We can define analogous quantity in Rd.
Formally,

χ(Rd) = min{m ∈ N : Rd = H1 ∪ . . . ∪Hm :

∀i,∀x, y ∈ Hi |x− y| 6= 1}.

Theorem(1951, P. Erdős, N.G. de Bruijn). If we accept the axiom of
choice then the chromatic number of Rd is equal to the chromatic
number of some finite distance graph in Rd.
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Large girth and large chromatic number

The girth of a graph the length of its shortest cycle.

Theorem (1959, P. Erdős). For any l, k ∈ N there exists a graph with
chromatic number greater than l and with girth greater than k.

In 1968 L. Lovász provided an explicit construction of such graphs.

Question: can we prove results of these type for distance graphs?
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Planar unit distance graphs

It is known that 4 ≤ χ(R2) ≤ 7.

Question (1975, P. Erdős): Is there a planar distance graph with
chromatic number 4 and without triangles?

In 2000 P. O’Donnell proved that

For any k ∈ N there exists a planar distance graph with the chromatic
number equal to four and with girth larger than k.
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Distance graphs in higher dimensions

It is known that the chromatic number of the space grows exponentially
with the dimension:

Theorem. We have

(ζlow + o(1))n ≤ χ(Rn) ≤ (3 + o(1))n, where ζlow = 1.239 . . .

The lower bound is due to A. Raigorodskii, the upper bound is due to
D.G. Larman and C.A. Rogers.

Question. Whether there exists a sequence of distance graphs (complete
distance graphs) in Rd, d = 1, 2, . . ., such that none of the graphs
contain cliques of fixed size, and, additionally, the chromatic number of
the graphs in the sequence grows exponentially with d?

What about graphs with girth greater than l for a fixed l greater than 3?
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Formulation of the question

Consider the following four families of distance graphs in Rd:

Denote by C(d, k) and G(d, k) the families of all distance graphs in Rd

that do not contain k-cliques and have girth at least k + 1 respectively.
Similarly, define families C∗(d, k), G∗(d, k) of complete distance graphs.

We define the following quantity:

ζk = lim inf
d→∞

max
G∈C(d,k)

(χ(G))1/d,

The quantities ζ∗k , ξk and ξ∗k are defined analogously, but here we
maximize over the graphs from families C∗(d, k),G(d, k) and G∗(d, k)
respectively.

Questions. Whether ζk > 1 or not? What about ζ∗k , ξk, ξ
∗
k? Is it true

that ζk ≥ ck, ζ∗k ≥ ck, where ck → ζlow as k →∞?
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Distance and complete distance graphs

It is not clear, why ζk and ζ∗k (or ξk and ξ∗k) should be different.

However, there is a strong evidence that they indeed should.

First, the number of distance and complete distance graphs differ greatly:

Theorem (AK, A. Raigorodskii, M. Titova; N. Alon, AK).
For any fixed d the number of distance graphs on n vertices in Rd is

2(1− 1
[d/2]

+o(1))n2

2 ,
while the number of complete distance graphs is
2(1+o(1))dn log2 n.

It is easy to see, that any bipartite graph is isomorphic to some graph
from G(d, k), where d ≥ 4, k ≥ 3.
On the other hand, we have the following statement:

For any natural d there exists a bipartite graph that is not isomorphic to
any complete distance graph in Rd.

Andrey Kupavskii Distance graphs



Introduction
The sketch of the proof

Distance and complete distance graphs

It is not clear, why ζk and ζ∗k (or ξk and ξ∗k) should be different.

However, there is a strong evidence that they indeed should.

First, the number of distance and complete distance graphs differ greatly:

Theorem (AK, A. Raigorodskii, M. Titova; N. Alon, AK).
For any fixed d the number of distance graphs on n vertices in Rd is

2(1− 1
[d/2]

+o(1))n2

2 ,
while the number of complete distance graphs is
2(1+o(1))dn log2 n.

It is easy to see, that any bipartite graph is isomorphic to some graph
from G(d, k), where d ≥ 4, k ≥ 3.
On the other hand, we have the following statement:

For any natural d there exists a bipartite graph that is not isomorphic to
any complete distance graph in Rd.

Andrey Kupavskii Distance graphs



Introduction
The sketch of the proof

Distance and complete distance graphs

It is not clear, why ζk and ζ∗k (or ξk and ξ∗k) should be different.

However, there is a strong evidence that they indeed should.

First, the number of distance and complete distance graphs differ greatly:

Theorem (AK, A. Raigorodskii, M. Titova; N. Alon, AK).
For any fixed d the number of distance graphs on n vertices in Rd is

2(1− 1
[d/2]

+o(1))n2

2 ,
while the number of complete distance graphs is
2(1+o(1))dn log2 n.

It is easy to see, that any bipartite graph is isomorphic to some graph
from G(d, k), where d ≥ 4, k ≥ 3.
On the other hand, we have the following statement:

For any natural d there exists a bipartite graph that is not isomorphic to
any complete distance graph in Rd.

Andrey Kupavskii Distance graphs



Introduction
The sketch of the proof

Distance and complete distance graphs

It is not clear, why ζk and ζ∗k (or ξk and ξ∗k) should be different.

However, there is a strong evidence that they indeed should.

First, the number of distance and complete distance graphs differ greatly:

Theorem (AK, A. Raigorodskii, M. Titova; N. Alon, AK).
For any fixed d the number of distance graphs on n vertices in Rd is

2(1− 1
[d/2]

+o(1))n2

2 ,
while the number of complete distance graphs is
2(1+o(1))dn log2 n.

It is easy to see, that any bipartite graph is isomorphic to some graph
from G(d, k), where d ≥ 4, k ≥ 3.

On the other hand, we have the following statement:

For any natural d there exists a bipartite graph that is not isomorphic to
any complete distance graph in Rd.

Andrey Kupavskii Distance graphs



Introduction
The sketch of the proof

Distance and complete distance graphs

It is not clear, why ζk and ζ∗k (or ξk and ξ∗k) should be different.

However, there is a strong evidence that they indeed should.

First, the number of distance and complete distance graphs differ greatly:

Theorem (AK, A. Raigorodskii, M. Titova; N. Alon, AK).
For any fixed d the number of distance graphs on n vertices in Rd is

2(1− 1
[d/2]

+o(1))n2

2 ,
while the number of complete distance graphs is
2(1+o(1))dn log2 n.

It is easy to see, that any bipartite graph is isomorphic to some graph
from G(d, k), where d ≥ 4, k ≥ 3.
On the other hand, we have the following statement:

For any natural d there exists a bipartite graph that is not isomorphic to
any complete distance graph in Rd.

Andrey Kupavskii Distance graphs



Introduction
The sketch of the proof

Quantities ζk, ζ∗k

Raigorodskii and Rubanov showed that ζk > 1 and that ζk ≥ ck, where
ck → ζlow as k →∞.

Later, together with Demechin they showed that ζ∗k > 1 and that
ζ∗k ≥ ck, where ck → 1.139 . . . as k →∞.

Two approaches to obtain bounds:

Probabilistic (Raigorodskii and Rubanov): no explicit graph, works only
for ζk, we obtain ζk > 1 only for k ≥ 5.

Code-theoretic (Demechin, Raigorodskii and Rubanov): explicit
constructions, works for k ≥ 3 for both ζk and ζ∗k . Better bounds for
small k. But as k grows, the bounds tend to some constant that is
smaller than ζlow.
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New results for ζk, ζ∗k

We refine both the probabilistic and code-theoretic approach.

The refinement of probabilistic approach works for k ≥ 3. We improve
bounds based on this approach for every k.

The refinement and generalization of code-theoretic approach allows us
to improve all bounds on ζk and ζ∗k based on this approach except for
k = 3. We also prove that ζ∗k ≥ ck, where ck → 1.154 . . . as k →∞.

In total, we improve all bounds on ζk and ζ∗k except for k = 3.

Question. Can we improve the constant 1.154 . . . for ζ∗k?
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Code-theoretic bounds

old bounds new bounds
k ζ∗k ≥ ζ∗k ≥
3 1.0582 1.0582
4 1.0582 1.0663
5 1.0582 1.0857
6 1.0743 1.0898
7 1.0857 1.0995
8 1.0933 1.1019
9 1.0992 1.1077
10 1.1033 1.1093
11 1.1075 1.1131
12 1.1096 1.1145
13 1.1124 1.1175

limk→∞ 1.139 1.154
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Probabilistic bounds

old bounds new bounds
k ζk ≥ ζk ≥
3 — 1.0147
4 — 1.0321
5 1.0029 1.0491
6 1.0183 1.0641
7 1.0362 1.0771
8 1.0524 1.0881
9 1.0663 1.0976
10 1.0781 1.1057
11 1.0886 1.1128
12 1.0985 1.1190
13 1.1073 1.1245
14 1.1151 1.1293
15 1.1220 1.1336
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Results for ξk, ξ∗k

Theorem (AK). For any k ∈ N we have ξk > 1.

Can we prove an analogous bound for ξ∗k?

Proposition (N. Alon, AK) For any g ∈ N there exists a sequence of
complete distance graphs in Rd, d = 1, 2, . . . , with girth greater than g
such that the chromatic number of the graphs in the sequence grows as
Ω
(

d
log d

)
.

Andrey Kupavskii Distance graphs



Introduction
The sketch of the proof

Results for ξk, ξ∗k

Theorem (AK). For any k ∈ N we have ξk > 1.

Can we prove an analogous bound for ξ∗k?

Proposition (N. Alon, AK) For any g ∈ N there exists a sequence of
complete distance graphs in Rd, d = 1, 2, . . . , with girth greater than g
such that the chromatic number of the graphs in the sequence grows as
Ω
(

d
log d

)
.

Andrey Kupavskii Distance graphs



Introduction
The sketch of the proof

Results for ξk, ξ∗k

Theorem (AK). For any k ∈ N we have ξk > 1.

Can we prove an analogous bound for ξ∗k?

Proposition (N. Alon, AK) For any g ∈ N there exists a sequence of
complete distance graphs in Rd, d = 1, 2, . . . , with girth greater than g
such that the chromatic number of the graphs in the sequence grows as
Ω
(

d
log d

)
.

Andrey Kupavskii Distance graphs



Introduction
The sketch of the proof

The sketch of the proof. Part 1

The proof of the theorem is based on the analysis of the properties of the
random subgraphs of the distance graphs G4n = (V4n, E4n), where

V4n = {x = (x1, . . . , x4n) : xi ∈ {0, 1}, x1 + . . .+ x4n = 2n},

E4n = {{x,y} : (x,y) = n}.

By (, ) we denote the scalar product.

Graphs of this type are used to obtain lower bounds on the chromatic
number of the space.
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The sketch of the proof. Part 2

It is easy to see that |V4n| = (2 + o(1))4n, |E4n| = (4 + o(1))4n.

One of the main ingridients of the proof is the theorem by P. Frankl and
V. Rödl concerning graphs G4n:

Theorem
For any ε > 0 there exists δ > 0 such that for any subset S of V4n,
|S| ≥ (2− δ)4n, the number of edges in S (the cardinality of E4n|S) is
greater than (4− ε)4n.
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One of the main ingridients of the proof is the theorem by P. Frankl and
V. Rödl concerning graphs G4n:

Theorem
For any ε > 0 there exists δ > 0 such that for any subset S of V4n,
|S| ≥ (2− δ)4n, the number of edges in S (the cardinality of E4n|S) is
greater than (4− ε)4n.

Andrey Kupavskii Distance graphs



Introduction
The sketch of the proof

The sketch of the proof. Part 3

Lovász local lemma
Let A1, . . . , Am be events in an arbitrary probability space and
J(1), . . . , J(m) be subsets of {1, . . . ,m}. Suppose there are real
numbers γi such that 0 < γi < 1, i = 1, . . . ,m. Suppose the following
conditions hold:

Ai is independent of algebra generated by {Aj , j 6∈ J(i) ∪ {i}}.
P(Ai) ≤ γi

∏
j∈J(i)(1− γj).

Then P
(∧m

i=1Ai

)
≥
∏m

i=1(1− γi) > 0.

Using local lemma we prove that random subgraph of G4n with positive
probability does not contain cycles of length less than k and
simultaneously the size of maximum independent set in the subgraph is
not bigger than (2− ε)4n for some ε > 0.
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Open problems

1 Improve the bound on limk→∞ ζ
∗
k .

2 Improve the bound on the chromatic number of sequences
of complete distance graphs that have large girth.

3 Prove that for some r there exists a sequence of complete
distance graphs that do not contain a copy of Kr,r and
whose chromatic number grows exponentially with the
dimension.

4 Prove that for some k values of ζk, ζ∗k (or ξk, ξ∗k) are
distinct.
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