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Obstructions to the realization of distance graphs with
large chromatic numbers on spheres of small radii

A. B. Kupavskii and A.M. Raigorodskii

Abstract. We investigate in detail some properties of distance graphs con-
structed on the integer lattice. Such graphs find wide applications in prob-
lems of combinatorial geometry, in particular, such graphs were employed
to answer Borsuk’s question in the negative and to obtain exponential esti-
mates for the chromatic number of the space.

This work is devoted to the study of the number of cliques and the
chromatic number of such graphs under certain conditions. Constructions
of sequences of distance graphs are given, in which the graphs have unit
length edges and contain a large number of triangles that lie on a sphere of
radius 1/

√
3 (which is the minimum possible). At the same time, the chro-

matic numbers of the graphs depend exponentially on their dimension. The
results of this work strengthen and generalize some of the results obtained
in a series of papers devoted to related issues.
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§ 1. Introduction

By an n-dimensional distance graph (n-dimensional graph of distances) we mean
any graph G = (V,E) with

V ⊆ Rn, E ⊆
{
{x,y} : |x− y| = a

}
for some (arbitrary) a > 0. Here |x − y| is the conventional Euclidean distance
between points. First, we shall distinguish between finite and infinite distance
graphs, and second, we shall say that a distance graph is complete if in the definition
of the set E of its edges the inclusion ‘⊆’ is replaced by exact equality. In other
words, a graph is complete if it contains all possible edges having the given length a.
Note that normalizing the set of vertices V by dividing each of its elements by a
gives a graph which is isomorphic to the original one. In what follows we shall not
distinguish between isomorphic graphs. Therefore, without loss of generality, we
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shall usually assume that a = 1. Such graphs are conventionally referred to as unit
distance graphs.

There is a large body of literature devoted to distance graphs (see, for inst-
ance, [1]). One of the most important problems of combinatorial geometry which is
intimately related to the concept of a unit distance graph is the problem of finding
the so-called chromatic number of the space Rn, which dates back to Nelson (see
[2], [3]) and Hadwiger (see [4]), who investigated related issues somewhat earlier
than Nelson. It is the quantity χ(Rn), which is defined as the least number of
colours needed to colour all points of Rn in such a way that no two of them distant
from each other by the distance 1 are coloured the same colour:

χ(Rn) = min
{
χ : Rn = V1 ⊔ · · · ⊔ Vχ, ∀ i ∀x,y ∈ Vi |x− y| ≠ 1

}
.

In terms of graphs this becomes the conventional chromatic number χ(G) of the
graph (see [5]) G = (Rn,E), where

E = {{x,y} : |x− y| = 1}.

In other words, we consider the complete distance graph whose vertex set is the
entire space Rn.

Since in the Nelson-Hadwiger problem points coloured the same colour should
not be distant from each other by the distance 1, in the context of this problem the
value of 1 is referred to as the forbidden distance. Moreover, the same term is used
for an arbitrary number a involved in the definition of a distance graph. At the same
time it is evident that the value of a has no effect on the chromatic number of the
space: as has already been mentioned, we shall not distinguish between isomorphic
graphs, and from the viewpoint of colouring this is quite possible to do.

Chromatic numbers of spaces have been investigated deeply (see [1]–[12]). We
shall be interested in estimates for them as n → ∞. First of all we note that
in what follows we shall often use relations of the form f(n) > (2 + o(1))n for
various functions f(n). Each time it will mean that there exists a function δ(n)
which tends to zero as n → ∞ and, for all values of n, satisfies the estimate
f(n) > (2 + δ(n))n. Relations of the form f(n) 6 n2 + O(n) and the like will be
treated in the corresponding way. In this notation, chromatic numbers are known
to satisfy the estimates

(ζlow + o(1))n 6 χ(Rn) 6 (ζhigh + o(1))n, ζlow = 1.239 . . . , ζhigh = 3.

The lower estimate was established by Raigorodskii [13], the upper bound by Lar-
man and Rogers in [14]. It is significant that the lower bound is derived by con-
sidering a particular distance graph in Rn. In this case it is a graph with vertices
in {−1, 0, 1}n. The previous (and the first ever obtained) exponential estimate for
the chromatic number had the form

χ(Rn) > (ζ ′low + o(1))n, ζ ′low = 1.207 . . . ,

and was established by Frankl and Wilson using a graph with vertices in {0, 1}n

(see [15]). In turn, over the decade that has passed since [13] was published, graphs
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with vertices at arbitrary points of the lattice Zn have been thoroughly investigated
(see [16]–[18]).

Of particular interest are unit distance graphs of a given radius r on spheres
Sn−1

r ⊂ Rn. Evidently, r > 1/2: otherwise, a graph with edges of length 1 cannot
be drawn on a sphere. First, suppose that r = 1/2. Then it is clear that any graph
G on the corresponding sphere is bipartite (it is a matching, the edges of which
join pairs of opposite points on the sphere). In other words, χ(G) 6 2. Erdős
conjectured that r = 1/2 is the only value for which the chromatic number of any
unit distance graph on the sphere of the corresponding radius is guaranteed to be
finite (see [19]). The Erdős conjecture was proved by Lovaśz (see [20]) with the
help of the topological method (see [21]): for any r > 1/2 and for any n ∈ N there
exists a (finite) distance graph G with edges of length 1 which lie on a sphere Sn−1

r

and whose chromatic number χ(G) is larger than n− 1.
In recent works [22], [23] Raigorodskii employed the linear algebra method in

combinatorics (see [8]) to significantly strengthen L. Lovaśz’s results in the cases
where n→∞. He succeeded in showing that for any r > 1/2 there exist a constant
ζr > 1, a function δ = δ(n), which tends to zero with increasing n (the dimension
of the space), and a sequence of (finite) unit distance graphs {Gn}∞n=1 such that
Gn ⊂ Sn−1

r and χ(Gn) > (ζr + δ)n.
On the one hand, the result mentioned above speaks well for the high stability of

the property that the chromatic number of the space is exponential: it is preserved
even when the entire space is limited to spheres of arbitrarily small (admissible)
radii. Of course, ζr → 1 as r → 1/2, and we still always have ζr > 1.

On the other hand, it is known from the school curriculum that the circle
circumscribed about the equilateral triangle with sides of length 1 has radius
1/
√

3 = 0.577 . . . > 1/2. In other words, the aforementioned result also means that
there are sequences of distance graphs without triangles whose chromatic numbers
grow exponentially. Moreover, there are sequences of graphs containing no cycles
of odd length whose chromatic numbers are exponentially large (see [24]). (Note
that cycles of even length exist on spheres of any radius r > 1/2.) In [24]–[27],

ζclique(k) = sup
{
ζ : ∃ δ(n), δ(n) = o(1), ∃ {Gn}∞n=1,

Gn ⊂ Rn, ω(Gn) < k, χ(Gn) > (ζ + δ(n))n
}
,

ζodd girth(k) = sup
{
ζ : ∃ δ(n), δ(n) = o(1), ∃ {Gn}∞n=1,

Gn ⊂ Rn, godd(Gn) > k, χ(Gn) > (ζ + δ(n))n
}
,

the optimal constants in the bases of the corresponding exponentials, were investi-
gated.

Here
ω(G) = max

{
|W | : W ⊆ V, ∀x, y ∈W {x, y} ∈ E

}
is the size of the largest clique (complete subgraph) in the graph G = (V,E) and
godd(G) is the odd girth of the graph, that is, the length of the shortest odd cycle in
the graph. For instance, each of the conditions ω(G) < 3 and godd(G) > 3 means
exactly that the graph G contains no triangles.

Note that all the distance graphs that have been mentioned above have vertices
in the normalized sets {0, 1}n, {−1, 0, 1}n and, more generally, in {0, 1, . . . ,m}n.
In particular, limk→∞ ζclique(k) = ζlow = 1.239 . . . , which was to be expected.
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It follows from what was said above that the absence of cliques and short cycles
in a graph serves as a weak constraint for the graph to have a large chromatic
number. In this work we impose even stronger constraints on the class of graphs
under consideration and show that even these constraints are, in a sense, ‘almost
uncorrelated’ with the value of the chromatic number. We shall see that even on
spheres of the smallest radius among all spheres that contain a clique of a given
size there are distance graphs with a very large number of cliques and/or very large
chromatic number. Moreover, the estimates for the chromatic numbers are almost
the same as for the graphs which contain no cliques of size larger by one. This is
evidence that cliques are in fact the only obstruction for the realization of distance
graphs on spheres of a certain radius.

Exact statements of the problems are given in the next section. Since cliques are
not that easy to deal with, and cycles are even more difficult to handle, and dealing
with cycles requires additional ideas and methods, we shall investigate cycles in
a separate work.

§ 2. Statements of the problems

It has already been mentioned that the circle circumscribed about an equilateral
triangle with sides of length 1 has radius r = 1/

√
3. A more general fact is that the

radius of the sphere circumscribed around a regular simplex with k vertices (that
is, a simplex of dimension k− 1) equals

√
(k − 1)/(2k). For k = 3 we have exactly

1/
√

3. Let us set rclique(k) =
√

(k − 1)/(2k). This is the smallest radius of a sphere
on which one can draw a unit distance graph containing a clique of size k.

Of course, there exist distance graphs G satisfying the conditions ω(G) = k and
G ⊂ Sn−1

rclique(k) for n > k. For instance, one can take just one simplex with k vertices.
The problem is to find out if there exist distance graphs with a large number of
cliques and/or a large chromatic number of spheres of such a small— critically
small — radius.

Let N(G) be the number of vertices in a graph G. Denote by Xk(G) the number
of k-cliques in G. Clearly, we have

Xk(G) 6 Ck
N(G) = O(Nk(G))

(we assume everywhere that k is a constant). It is also easy to present a graph
G ⊂ Sn−1

rclique(k) with Xk(G) = Ω(N(G)). It suffices to arrange n mutually disjoint
simplices of dimension k−1 on a sphere. However, first, N(G) is incomparably less
than Nk(G), and second, there is not much to be said about the chromatic number
of such graphs: it is equal to k, which means that it does not even grow as n→∞.
Leaving the problem of the chromatic number aside for a while, we consider the
quantity

κclique(k) = max
{
κ : ∃ ε(n), ε(n) = o(1), ∃ {Gn}∞n=1,

Gn ⊂ Sn−1
rclique(k), N(Gn) ↗∞, Xk(Gn) = Ω(Nκ+ε(n)(Gn))

}
.

In view of the remarks made above it is obvious that 1 6 κclique(k) 6 k, and it is by
no means evident that κclique(k) > 1. Nevertheless, in the subsequent sections we
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shall demonstrate that κclique(k) almost attains its maximum possible value with
increasing k. Note that the function ε involved in the definition of κclique(k) is
introduced for the reason that we shall often obtain estimates of the form

Xk(Gn) = Ω
(

Nβ(Gn)
lnγ(N(Gn))

)
, γ > 0, β > 1,

in which we cannot get rid of logarithms. It is in order not to deal with logarithms
and similar ‘add-ons’ that we introduce the correction ε.

Now we return to the problem of the chromatic number. Suppose that we have
constructed a distance graph G on the sphere Sn−1

rclique(k) with some number of cliques
(for instance, the maximum possible number). In view of the results in [22], [23],
on the same sphere one can arrange a graph H with the chromatic number

χ(H) > (ζrclique(k) + δ)n

(see § 1). If the value of N(G) is not much different from N(H), then taking the
union of the graphs G and H we obtain a graph F with a large number of cliques
and a large chromatic number at the same time.

Even if we forget that N(G) ≈ N(H), the example given above seems quite
artificial. Therefore, we shall not take a close look at the condition of the approx-
imate equality between the numbers of vertices, but recall what has already been
discussed several times in the introduction: all lower bounds for various inter-
esting ‘colour’ characteristics are derived with the use of {0, 1}-, {−1, 0, 1}- and
{0, 1, . . . ,m}-points. Moreover, the inequalities announced above for κclique(k) will
also be substantiated with the use of such points. Therefore, it is reasonable to
consider specializations of our problem to graphs with vertices located at points of
the lattice Zn. Here we are faced with a small difficulty. Of course, such graphs do
not lie on the spheres Sn−1

rclique(k) and (as a rule) are not unit distance graphs. How-
ever, after an appropriate normalization their homothetic copies may well both be
arranged on the spheres and have edges of length 1. In what follows, when talking
about the ‘cases of {0, 1, . . . ,m}-points’ we shall assume that they are appropriately
normalized. Note that the case of {−1, 0, 1}-points can be reduced to the case of
{0, 1, 2}-points by a simple parallel translation. Therefore, it also agrees with the
general approach for m = 2.

Thus, we say that an n-dimensional distance graph G = (V,E) belongs to the
class A (n,m) if V ⊂ {0, 1, . . . ,m}n and for any x ∈ V , x = (x1, . . . , xn), and any
i ∈ {0, 1, . . . ,m}, the number of coordinates xj equal to i is the same. In other
words, there are positive integers l0, l1, . . . , lm which sum up to n and satisfy the
conditions

|{j : xj = 0}| = l0, |{j : xj = 1}| = l1, . . . , |{j : xj = m}| = lm.

It is obvious that a graph G with particular l0, l1, . . . , lm automatically lies on
a sphere, the squared radius of which equals l1 + 4l2 + · · ·+m2lm.

We say that an n-dimensional distance graph G = (V,E) belongs to the class
A (n,m, r), r > 1/2, if G is a unit distance graph, G ⊂ Sn−1

r , and G is obtained
from some graph H ∈ A (n,m) via normalization. Since for m = 2 it will be
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convenient to consider {−1, 0, 1}-points rather than {0, 1, 2}-points, in order to
avoid confusion we introduce two more classes: A ′(n, 2) and A ′(n, 2, r).

Now let us define several new ‘extremal’ quantities. First of all, we set

κclique(k,m) = max
{
κ : ∃ ε(n), ε(n) = o(1), ∃ {Gn}∞n=1,

Gn ∈ A (n,m, rclique(k)), N(Gn) ↗∞, Xk(Gn) = Ω(Nκ+ε(n)(Gn))
}
.

It is clear that κclique(k) > maxm κclique(k,m). In this work, it is the last maximum
that we shall be interested in.

Further, with graphs that are in the classes A (n,m, r) the trick of the artificial
unification of a graph G having a large value of Xk and a graph H having a large
value of χ does not work. Of course, both graphs belong to some classes A (n,m, r),
but G has its own parameters l0, l1, . . . , lm, which are in general different from the
parameters of H. Therefore, it becomes reasonable to introduce and investigate the
following characteristics:

κχ
clique(k,m) = max

{
κ : ∃ ε(n), ε(n) = o(1), ∃ {Gn}∞n=1, Gn ∈ A (n,m, rclique(k)),

N(Gn) ↗∞, Xk(Gn) = Ω(Nκ+ε(n)(Gn)), χ(Gn) →∞
}
,

κχ−exp
clique (k,m) = max

{
κ : ∃ ε(n), ε(n) = o(1), ∃ δ(n), δ(n) = o(1),

∃ ζ > 1, ∃ {Gn}∞n=1, Gn ∈ A (n,m, rclique(k)), N(Gn) ↗∞,

Xk(Gn) = Ω(Nκ+ε(n)(Gn)), χ(Gn) > (ζ + δ(n))n
}
,

κχ
clique(k) = max

m
κχ

clique(k,m), κχ−exp
clique (k) = max

m
κχ−exp

clique (k,m),

χκ
clique(k,m) = sup

{
χ : ∃ ε(n), ε(n) = o(1), ∃ δ(n), δ(n) = o(1),

∃κ > 1, ∃ {Gn}∞n=1, Gn ∈ A (n,m, rclique(k)), N(Gn) ↗∞,

Xk(Gn) = Ω(Nκ+ε(n)(Gn)), χ(Gn) > (χ+ δ(n))n
}
,

χκ
clique(k) = max

m
χκ

clique(k,m).

Note that the mere existence of graphs in the classes A (n,m, r) for arbitrary
values of r is not that obvious. In turn, we shall be interested in sequences of
distance graphs in the classes A (n,m, rclique(k)), that is, sequences whose elements
lie on spheres of critical radius. Moreover, these elements (graphs) should satisfy
the following additional conditions:

• they contain as many cliques as possible (the quantities κclique(k,m),
κclique(k));

• they contain as many cliques as possible under the condition that the chro-
matic number grows infinitely (the quantities κχ

clique(k,m), κχ
clique(k));

• they contain as many cliques as possible under the condition that the chro-
matic number grows exponentially (the quantities κχ−exp

clique (k,m), κχ−exp
clique (k));

• they have the largest possible chromatic number under the condition that
there are untrivially many cliques in them (the quantities χκ

clique(k,m),
χκ

clique(k)).
In § 3 we shall discuss the case m = 1, in § 4, the case m = 2, and in § 5, the

general case.
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§ 3. Constructions with {0, 1}-points

In this section we first learn how to handle the case k = 3, that is, we study
triangles on spheres. Then we pass to the case of arbitrary cliques. Each time, we
employ graphs belonging to A (n, 1). All graphs considered here are complete.

The section is divided into four subsections. In § 3.1 we describe the properties
of graphs belonging to the class A (n, 1) and, in particular, calculate the radii of
the spheres on which these graphs are located. In § 3.2, which is in turn divided
into subsubsections, we study triangles. In § 3.3, which is divided further as well,
we investigate k-cliques with k > 4. In § 3.4 we briefly review the main results of
this section.

3.1. General properties of a graph in the class AAAAAAA (n, 1). If a graphG belongs
to the class A (n, 1), then each of its vertices has l1 coordinates equal to 1 and
l0 = n − l1 zero coordinates. Denote by y1 the value of the forbidden distance
that is responsible for the edges of G. Since all vertices of the graph have the
same number of coordinates of a given value, the forbidden distance y1 is uniquely
expressed in terms of the forbidden inner product x1: |x−y|2 = 2l1−2(x,y), so that
y2
1 = 2l1 − 2x1. As a result, the properties of the graph G are determined not only

by the value of n, but also by the quantities l1 ∈ {0, . . . , n} and x1 ∈ {0, . . . , l1}.
We find the radius of the sphere on which G lies. Of course, we know that

G ⊂ Sn−1
r with r2 = l1. However, it is easily seen that G lies in the intersection of

the aforementioned sphere with the plane {x = (x1, . . . , xn) : x1 + · · · + xn = l1},
and hence, G lies on a sphere centred at (l1/n, . . . , l1/n). Thus, the desired radius
r = r(n, l1) is calculated by the formula

r2 = l1

(
1− l1

n

)2

+ (n− l1)
l21
n2
.

Let us see what happens if we reduce graph G to a unit distance graph via an
appropriate normalization. Of course, we must scale by y1. As a result, the graph
H = (1/y1) ·G occurs on the sphere Sn−1

r′ with

r′ = r′(n, l1, x1) =

√
l1(1− l1/n)2 + (n− l1)l21/n2

2l1 − 2x1
. (3.1)

In other words, H ∈ A (n, 1, r′).
Formula (3.1) does not seem to be suitable for calculations. Let us represent

l1 in the form l1 = an and x1 in the form x1 = xn. Of course, such a change of
variables makes the formulae simpler: indeed, as a result of such a representation,
after appropriate cancellations we have

r′ =

√
a(1− a)
2a− 2x

. (3.2)

At the same time, this change of variables is quite restrictive, since from now on
we have to assume that a, x ∈ Q, and hence n is such that an ∈ N and xn ∈ N
(this is what the restriction caused by the above change of variables consists of).
Otherwise, the formula is simply not correct.
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However, we see already that as soon as we estimate ‘extremal’ characteristics
of the form κclique(k, 1) and κclique(k), it is much more convenient to optimize over
a ∈ [0, 1] and x ∈ [0, a], rather then over arbitrary l1 and x1. In § 3.2 we show that
in doing so we do not lose much: in a sense, we lose nothing at all.

3.2. Triangles. In this subsection we investigate the quantities κclique(3, 1),
κclique(3) and others. The subsection is divided into subsubsections. In § 3.2.1
we consider a rather special case of the construction described in § 3.1 and derive
some estimates for the quantities κclique(3, 1) and κclique(3). In § 3.2.2 we make some
important intermediate comments on the results obtained. In § 3.2.3 we prove the
optimality of the construction suggested in § 3.2.1. Finally, in § 3.2.4 we discuss the
chromatic numbers of the graphs mentioned in the previous subsubsections.

3.2.1. The case a = 1/3, x = 0. In the case where a = 1/3, x = 0, we have

r′ = r′(n, l1, x1) = r′(n, a, x) =

√
1/3 · 2/3

2/3
=

1√
3

= rclique(3).

In other words, if n is divisible by 3, then the corresponding graph Gn belongs to
the class A (n, 1, rclique(3)). For such a graph we have

N(Gn) = Can
n = Cn/3

n =
(

1
(1/3)1/3(2/3)2/3

+ o(1)
)n

= (1.889 . . .+ o(1))n ↗∞.

Further, triangles in Gn are formed by vertices such that all the pairwise inner
products of the corresponding vectors vanish (which is to say that the subsets of
their nonzero coordinates are pairwise disjoint1). Then it is clear that the number
of triangles in Gn has the form

X3(Gn) = Cn/3
n C

n/3
2n/3 = (3 + o(1))n.

As a result,

X3(Gn) = Ω(N log
(((1/3)1/3(2/3)2/3)−1+o(1))

(3+o(1))(Gn)) = Ω(N1.726...+o(1)(Gn)).

Looking at the definition of the quantity κclique(3, 1), one might think that we
have just derived the estimate κclique(3, 1) > 1.726 . . . . Unfortunately, this is not
exactly so. Indeed, we have obtained an ε = o(1) and a sequence of graphs Gn ∈
A (n, 1, rclique(3)) satisfying the properties N(Gn) ↗∞ and

X3(Gn) = Ω(N1.726...+ε(Gn)).

The problem is that here n runs not through all positive integers, but only multiples
of 3. Properly speaking, we should introduce the new quantity

κ̂clique(k,m) = max
{
κ : ∃ ε(n), ε(n) = o(1), ∃ {ni}∞i=1, ∃ {Gni

}∞i=1,

Gni
∈ A (ni,m, rclique(k)), N(Gni

) ↗∞, Xk(Gni
) = Ω(Nκ+ε(ni)(Gni

))
}
.

It is this quantity and the corresponding quantity κ̂clique(k) that satisfy the
following bound.

1We say ‘nonzero’, rather than ‘unit’, because, strictly speaking, the graph Gn is obtained by
normalizing some graph on {0, 1}-points.
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Theorem 1. The following estimate holds:

κ̂clique(3) > κ̂clique(3, 1) > log 1
(1/3)1/3(2/3)2/3

3 = 1.726 . . . .

In the next subsubsection we shall discuss how strong the restriction that we
had to make actually is.

3.2.2. Intermediate comments. In the previous subsubsection we proved the simple
Theorem 1. Unfortunately, the bound established in that theorem applies not to
the original quantities, but to the new ‘hatted’ quantities. In this subsubsection
we touch upon the question of whether the problem encountered can or should be
fixed.

One may attempt to overcome this difficulty, for instance, in the following way:
replace the quantity an in the definition of the graph in § 3.1 with the quantity [an].
Of course, all calculations made in § 3.2.1 remain valid (for a = 1/3). However, as
a matter of fact, we reduce the convenient formula (3.2) back to the cumbersome
formula (3.1). Moreover, instead of the exact equality r′ = 1/

√
3 we establish only

the asymptotic behaviour r′ ∼ 1/
√

3. This is definitely not a resolution of the
problem.

In fact, the situation is much better.

Theorem 1′. The following estimate holds:

κclique(3) > κclique(3, 1) > log 1
(1/3)1/3(2/3)2/3

3 = 1.726 . . . .

Proof. Let n be an arbitrary positive integer. Take the greatest positive integer ν
which is divisible by 3 and does not exceed n. It is evident that ν > n − 2. We
know from § 3.2.1 that there exists a graph Gν ∈ A (ν, 1, rclique(3)) with

N(Gν) =
(

1
(1/3)1/3(2/3)2/3

+ δ1(ν)
)ν

, X3(Gν) = (3 + δ2(ν))ν ,

δ1 = o(1), δ2 = o(1), ν →∞.

We add to the end of the coordinates of each vertex of the graph Gν n − ν zero
coordinates (the edges being preserved) and denote the graph obtained by Gn. It
is clear that Gn ∈ A (n, 1, rclique(3)) and that

N(Gn) =
(

1
(1/3)1/3(2/3)2/3

+ δ1(ν)
)ν

=
(

1
(1/3)1/3(2/3)2/3

+ δ′1(n)
)n

,

δ′1 = o(1), n→∞,

X3(Gn) = (3 + δ′2(n))n, δ′2 = o(1), n→∞.

Thus, we have once again

X3(Gn) = Ω(N log
(((1/3)1/3(2/3)2/3)−1+o(1))

(3+o(1))(Gn)) = Ω(N1.726...+o(1)(Gn)),

which proves the theorem.
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Throughout this work (for instance, in the case of {−1, 0, 1}-points), the corres-
ponding theorems ‘with primes’ can be established. In order not to do it each time,
we replace all quantities in the second subsection with the corresponding ‘hatted’
quantities (as before the formulation of Theorem 1) and study only these ‘hatted’
quantities. However, in doing so we keep in mind that the results obtained for the
‘hatted’ quantities are usually easy to adjust to the original quantities (without
hats).

3.2.3. The estimate established in Theorem 1 is optimal. In this subsubsection we
find all pairs a, x such that any graph in the class A (n, 1, r′) (r′ is determined
by formula (3.2)) contains triangles and the value of r′ is the smallest (that is,
r′ = rclique(3)). Eventually we shall see that the pair (a, x) = (1/3, 0) is actually the
only such pair and, hence, Theorem 1 is unimprovable within the class A (n, 1, r′).

First, we shall establish conditions under which a graph in the class mentioned
above contains a triangle. Let x 6 a/2 and suppose that the graph contains a tri-
angle ∆(x,y, z) with vertices x, y, z. Denote by Ax, Ay, Az the sets of nonzero
coordinates of the vectors x, y, z. All these sets are subsets in Rn = {1, . . . , n}.
Their pairwise intersections are of cardinality xn, and under such conditions they
take up minimum space in Rn (that is, their union has the minimum cardinality)
as long as, without loss of generality,

Ax = {1, . . . , an}, Ay = {an− xn+ 1, . . . , an, an+ 1, . . . , 2an− xn},
Az = {1, . . . , xn} ⊔ {2an− 2xn+ 1, . . . , 2an− xn}

⊔ {2an− xn+ 1, . . . , 3an− 3xn}.

Such an arrangement is possible due to the inequality x 6 a/2. Consequently, the
graph contains a triangle if and only if 3an− 3xn 6 n, that is, a− x 6 1/3.

Now suppose that x > a/2. Then the optimal arrangement of the sets Ax, Ay,
Az is as follows:

Ax = {1, . . . , an}, Ay = {an− xn+ 1, . . . , an, an+ 1, . . . , 2an− xn},

Az = {1, . . . , xn} ⊔ {a+ 1, . . . , 2an− xn}.

It is seen that in this case it is necessary and sufficient that 2a− x 6 1.
Thus, we have to find out for what values of a, x (including the values a = 1/3

and x = 0 already known) expression (3.2) attains its minimum value with due
regard to the conditions established. Differentiating this expression (to be more
exact, the squared expression) with respect to a gives

∂

∂a
((r′)2) =

∂

∂a

(
a(1− a)
2a− 2x

)
= −a

2 − 2ax+ x

2(a− x)2
.

Since a ∈ [0, 1], x ∈ [0, a], we have x > ax and a2 > ax. Hence, a2 + x > 2ax,
which means that the derivative is nonpositive for any x. Thus, to minimize (3.2),
we should take the value of a as large as possible.

Let x 6 a/2. Then the largest value of a is equal to 1/3 + x. In this case,
x 6 1/6 + x/2, and hence x 6 1/3.
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Let x > a/2. Then the largest value of a equals (x + 1)/2. In this case,
x > (x+ 1)/4, and so x > 1/3.

In other words, for x 6 1/3 we have a = 1/3 + x, and for x > 1/3 we have
a = (x+ 1)/2. Let us substitute these values of a into (3.2).

In the first case we obtain the expression (x+ 1/3)(2/3− x)/(2/3). This is
a parabola which opens downward and has its maximum at x = 1/6. Therefore,
the minimum value over x 6 1/3 is attained both at x = 0 and at x = 1/3 (because
of the symmetry of the curve). If x = 0, then a = 1/3, that is, we arrive at the
parameters mentioned in the proof of Theorem 1. If x = 1/3, then a = 2/3. It is
easy to see that this case is obtained from the previous case by replacing nonzero
elements by zeros and vice versa at each vertex of the graph. Of course, in the
framework of this situation, the exact analogue of Theorem 1 is valid. However,
we note that the ‘dual change’ under which nonzero and zero elements interchange
proves to be very useful below, since under such transformation the result remains
unchanged.

In the second case we obtain the expression

((x+ 1)/2) · ((1− x)/2)
1− x

=
x+ 1

4
.

Of course, it attains its minimum at x = 1/3. But then a = 2/3, and this case has
already been considered.

As a consequence, we see that Theorem 1 is indeed unimprovable.

3.2.4. On chromatic numbers. In the previous subsubsections we made no mention
of the chromatic numbers of the graphs constructed. They exhibit very interesting
behaviour. Indeed, for a = 1/3, x = 0 we have a classical Kneser graph KGn,an

(see [21]). It is well known that χ(KGn,k) = n − 2k + 2. Thus, the chromatic
number of our graph tends to infinity, but the rate of its growth is linear rather
than exponential. This means that, as a consequence of Theorem 1, we obtain the
estimates

κ̂χ
clique(3) > κ̂χ

clique(3, 1) > 1.726 . . . .

However, there are no estimates yet for the other quantities.
We know from § 3.2.3 that in fact there are no other distance graphs on a sphere of

the smallest radius. Hence, {0, 1}-points cannot be used to estimate the quantities
of the type κ̂χ−exp

clique (3). This is of independent interest, since it forces us to work
with points of more complicated structure.

One could attempt to construct graphs on spheres whose radii tend asymptoti-
cally to 1/

√
3. In this case it can be assumed that a ∼ 1/3, x ∼ 0. Unfortunately,

even in such a situation chromatic numbers grow subexponentially. This fact fol-
lows from the results of [17]. Moreover, it is interesting to see what happens in
a similar situation in § 4.

3.3. Cliques with an arbitrary k. In the previous subsubsection we discussed
the case k = 3 in full detail. Now we are ready to consider an arbitrary k > 3. While
earlier we first presented a construction and then verified that it is unimprovable,
from now on, the line of our reasoning will go backwards. The reason for this is that
for k > 4 there are several different constructions even with due account taken of



1446 A.B. Kupavskii and A.M. Raigorodskii

duality. In § 3.3.1 we derive some necessary conditions for the existence of a k-clique
in a graph of the class A (n, 1, rclique(k)). In § 3.3.2 we establish the sufficiency of
these conditions. In § 3.3.3 we prove Theorem 2, which is the analogue of Theorem 1
for arbitrary k. In this theorem we estimate the quantities under investigation with
the use of various constructions presented in §§ 3.3.1, 3.3.2. In § 3.3.4 we choose
the optimal bound among the estimates established in Theorem 2 and evaluate
it for small values of k. Finally, § 3.3.5 is devoted to chromatic numbers and the
corresponding extremal characteristics.

3.3.1. Necessary conditions for the presence of a k-clique. We are interested in the
graph class A (n, 1, rclique(k)). Of course, all of its elements Gn are obtained by
normalization of graphs Hn ∈ A (n, 1). We shall assume, as in § 3.2, that the graphs
Hn are determined by parameters a ∈ [0, 1] and x ∈ [0, a]. The following assertion
holds.

Proposition 1. Let k > 3 and suppose that a graph Gn ∈ A (n, 1, rclique(k)) is
obtained by normalization of a graph Hn ∈ A (n, 1) determined by parameters a
and x, and at the same time ω(Gn) = ω(Hn) = k , which is to say that the graphs
Gn and Hn contain k-cliques. Then the value of the parameter a must have the
form a = i/k for some (arbitrary) i ∈ {1, . . . , k − 1}, and the corresponding value
of the parameter x must be equal to

i− 1
k − 1

a =
i(i− 1)
k(k − 1)

.

Note that for k = 3 we obtain exactly the result of § 3.2.3. Also, note that graphs
with a = i/k are dual to graphs with a = (k− i)/k. However, for k > 4 there are at
least two different types of graphs; to be more exact, the number of types is [k/2].

Proof of Proposition 1. First we shall make maximum use of the fact that Hn

(this particular graph Hn) is determined by the parameters a and x and contains
a k-clique Kk. For this purpose we introduce some additional concepts and nota-
tion. Let F ⊆ Hn be an arbitrary subgraph. Each of its vertices is a point with
coordinates 0 and 1. There is a total of n coordinates. By the degree of the jth
coordinate in the graph F we mean the number of the graph vertices which have this
coordinate equal to 1. This term is quite natural, since the sets of unit components
of the vertices of our graph form a hypergraph in which the degree of a coordinate
is just the degree of the vertex. We denote the degree by degF j.

Consider a clique Kk ⊂ Hn. Each of its vertices has an coordinates 1. Hence,
the total number of unit coordinates at its vertices is kan. On the other hand, let
us set dj = degKk

j, j = 1, . . . , n. Then the total number of unit coordinates can
be expressed in another way:

∑n
j=1 dj . Thus, we have the equality

n∑
j=1

dj = kan.

Further, let us make use of the fact that the inner product of any two vectors
that correspond to vertices of the clique Kk equals xn. Let us sum up all the inner
products (of unordered pairs of vectors). On the one hand, we obtain C2

kxn. On
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the other hand, it is easily seen that the total sum is
∑n

j=1 C
2
dj

. Note that this
line of reasoning is convenient when the vertices of the clique are written as rows
of a matrix Mk with entries equal to 0 and 1: this matrix contains k rows and n
columns.

As a result, we have a system of equations

n∑
j=1

dj = kan,

n∑
j=1

C2
dj

= C2
kxn.

(3.3)

Now we shall take due account of the fact that Gn (this particular graph Gn)
lies on a sphere of radius rclique(k), that is, on a sphere of smallest radius. This
radius is expressed in terms of a, x by formula (3.2), and for a fixed value of a, the
smaller the value of x the smaller the radius. Thus, let a be fixed. Then it is seen
from (3.3) that the sum

∑n
j=1 dj is fixed as well. It is well known that under this

condition the sum
∑n

j=1 C
2
dj

attains its minimum value (and, in view of (3.3), so
does x) as long as all quantities dj are equal to the same quantity d. Moreover, if
even one equality fails, then the minimum value of nC2

d cannot be attained.
Thus, we are forced to assume that d1 = · · · = dn = d ∈ {1, . . . , k − 1}. Then

by (3.3) we have dn = kan, which yields d = ka, and therefore a = d/k, as claimed
in the proposition (with the only difference that here i is replaced with d). At the
same time

x =
C2

d

C2
k

=
d(d− 1)
k(k − 1)

.

We note that substituting the values obtained into (3.2) gives exactly rclique(k).
This completes the proof of Proposition 1.

3.3.2. Sufficient conditions for the presence of a k-clique. It turns out that the
necessary conditions derived in the previous subsubsection become sufficient under
one additional assumption.

Proposition 2. Let k > 3, i ∈ {1, . . . , k − 1}, and suppose that a graph Gn ∈
A (n, 1, rclique(k)) is obtained by normalizing a graph Hn ∈ A (n, 1) specified by
the parameters a = i/k and x = i(i− 1)/(k(k − 1)). Let Ci

k divide n. Then
ω(Gn) = ω(Hn) = k .

The additional assumption mentioned above consists of the fact that the dimen-
sion is divisible by Ci

k.

Proof of Proposition 2. We have to prove that the graph Hn contains a k-clique.
Let us construct this clique explicitly in the form of a matrix Mk (see § 3.3.1). The
matrix will be composed of n/Ci

k identical successive blocks of size k × Ci
k. The

columns of each block will represent all possible k-tuples containing i 1s.
Let us find the number of 1s at each vertex of the constructed graph. In each

block there are as many 1s as there are i-element subsets containing a fixed element
in a k-element set, that is, Ci−1

k−1. Hence, there is a total of

Ci−1
k−1

n

Ci
k

=
i

k
n = an
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1s, which is all right.
Let us calculate the inner product of the vectors corresponding to any two ver-

tices. Within each block, the number of 1s they have in common is equal to the
number of i-element subsets containing two given elements in a k-element set, that
is, Ci−2

k−2. In total, we have

Ci−2
k−2

n

Ci
k

=
i(i− 1)
k(k − 1)

n = xn.

Again, everything is all right.
The proof of the proposition is complete.

3.3.3. Estimating the number of k-cliques. The following assertion holds.

Theorem 2. Let k > 3, i ∈ {1, . . . , k − 1}. Then

κ̂clique(k) > κ̂clique(k, 1) > log k

ii/k(k−i)(k−i)/k
Ci

k.

Note that Theorem 1 is a particular case of Theorem 2 for k = 3, i = 1.

Proof of Theorem 2. Given k and i, let us consider only integers n ∈ N that are
divisible by Ci

k and satisfy the conditions (i/k)n ∈ N and

i(i− 1)
k(k − 1)

n ∈ N.

Then Proposition 2 provides an explicit construction for a k-clique in the graph
Gn which is obtained from a graph Hn with parameters a = i

k and x = i(i−1)
k(k−1) .

At the same time, Proposition 1 suggests that there exists no better (different)
construction. The explicit construction mentioned above can be obtained in many
different ways by rearranging columns in the matrix Mk. The number of such
rearrangements (and hence the number of k-cliques) is

Xk(Gn) =
n!

((n/Ci
k)!)Ci

k

= (Ci
k + o(1))n.

At the same time,

N(Gn) = Can
n =

(
1

(i/k)i/k((k − i)/k)(k−i)/k
+ o(1)

)n

=
(

k

ii/k(k − i)(k−i)/k
+ o(1)

)n

.

Therefore, we in fact have

κ̂clique(k) > κ̂clique(k, 1) > log k

ii/k(k−i)(k−i)/k
Ci

k.

The proof of the theorem is complete.
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3.3.4. Optimization in Theorem 2. First of all, let us establish the following result.

Theorem 3. The following inequality holds:

κ̂clique(2k) > κ̂clique(2k, 1) > 2k − 1
2

log2(πk) + o(1).

Proof. In Theorem 2 let us take 2k instead of k and set i equal to k. Then

2k
kk/(2k)(2k − k)(2k−k)/(2k)

= 2, Ck
2k ∼

22k

√
πk
.

It is evident that

log2

(
(1 + o(1))

22k

√
πk

)
= 2k − 1

2
log2(πk) + o(1).

The proof of the theorem is complete.

It is clear that for odd values of arguments, the quantities κ̂clique(k), κ̂clique(k, 1)
satisfy almost the same estimate. And this bound is quite remarkable: it turns out
that, as k increases,

k +O(log k) 6 κ̂clique(k) 6 k,

which means that κ̂clique(k) ∼ k with a sharp asymptotic remainder estimate. Below
we shall further improve this estimate by consideringm>2 (that is {−1, 0, 1}-points
and so on).

For small values of k one can draw a table of evaluations of the estimate derived
in Theorem 2 (see Table 1).

Table 1

i \ k 3 4 5 6 7 8 9 10

1 1.7261 2.4652 3.2162 3.97670 4.7447 5.5191 6.2988 7.0830

2 1.7261 2.5849 3.4214 4.2545 5.0888 5.9256 6.7651 7.6072

3 – 2.4652 3.4214 4.3219 5.2061 6.0846 6.9610 7.8372

4 – – 3.2162 4.2545 5.2061 6.1292 7.0401 7.9450

5 – – – 3.9767 5.0888 6.0846 7.0401 7.9772

6 – – – – 4.7447 5.9256 6.9610 7.9450

7 – – – – – 5.5191 6.7651 7.8372

8 – – – – – – 6.2988 7.6072

9 – – – – – – – 7.0830

It is seen that each time the maximum value (highlighted in bold) is attained
for i = [k/2] and for i = k − [k/2]. One can show formally that this is indeed the
case. Thus, it can be said that Theorem 3 is the strongest corollary of Theorem 2.
We shall not go into details here since it is actually an exercise in calculus (though
not that easy).
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3.3.5. On chromatic numbers. Here the situation is much more interesting than
in the same-titled subsubsection of the previous subsection. Namely, chromatic
numbers become exponential for k > 4. In order to understand this and to perform
an appropriate optimization, we must take a certain path.

First of all, we get rid of the constructions which repeat due to duality by letting
i 6 [k/2]. Then, for i = 1 we again have a Kneser graph, whose chromatic number
is linear (see § 3.2.4). Thus, we fix k > 4 and i ∈ {2, . . . , [k/2]}. It is clear that in
this case a 6 1/2 and x < a/2.

Now suppose (for a while) that an − xn is a power of a prime p, which means
that the dimension n is such that not only an, xn ∈ N, but also an − xn = pα,
α > 1. Then the following assertion holds.

Proposition 3. If the values of the parameters a and x, as well as the dimen-
sion n, satisfy all the conditions mentioned above, then the corresponding graph
Hn ∈ A (n, 1) (and hence the graph Gn ∈ A (n, 1, rclique(k)) as well) has a chro-
matic number χ(Hn) bounded below by the quantity

Can
n∑pα−1

j=0 Cj
n

.

The proof of Proposition 3 is obtained by applying the standard linear algebra
method in combinatorics (see [8]). Below we give only a sketch of this proof; all
details can be easily reconstructed with the help of the monograph [8], in which
very similar assertions are proved.

Proof of Proposition 3 (sketch). For the sake of simplicity let us assume that α = 1.
With each vertex x = (x1, . . . , xn) of the graph Hn we associate a polynomial
Fx ∈ Zp[y1, . . . , yn] defined by the relations

Fx(y) =
∏
j∈J

(j − (x,y)), J = {1, . . . , p} \ {an mod p},

y = (y1, . . . , yn), y2
t = yt, t ∈ {1, . . . , n}.

The degree of this polynomial is p − 1, and by virtue of the relations y2
t = yt,

its degree in each of the variables is at most 1. Thus, all the polynomials Fx lie in
a space of dimension

∑p−1
j=0 C

j
n.

If W = {x1, . . . ,xs} is an independent set of vertices of the graph Hn, which
means that it contains no edges or, what is the same, (xr,xt) ̸= xn, then taking
into account the inequality x < a/2 (which yields an − 2p = an − 2(an − xn) =
2xn − an < 0) we have (xr,xt) ̸≡ xn (mod p) for r ̸= t. Thus, it is easily shown
that the polynomials Fx1 , . . . , Fxs are linearly independent over Zp and hence s 6∑p−1

j=0 C
j
n. As a result, the maximum size α(Hn) of an independent set in Hn does

not exceed the same value and, consequently,

χ(Hn) >
|V (Hn)|
α(Hn)

>
Can

n∑p−1
j=0 C

j
n

.

The proof of Proposition 3 is complete.
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Modifying the estimate established in Proposition 3 with the use of Stirling’s
formula we obtain the inequality

χ(Hn) >

(
(a− x)a−x(1− a+ x)1−a+x

aa(1− a)1−a
+ o(1)

)n

. (3.4)

All is well, but there is a problem which consists of the fact that the quantity
an−xn should hardly ever be considered as exactly equal to pα. At the same time,
primality is very important for the proof of Proposition 3, since in the case when
an− xn = q ̸= pα the existing estimates are much worse (see [28]).

To come out of these difficulties with honour we should replace the condition
Gn ∈ A (n, 1, rclique(k)) involved in the definition of the quantities

κ̂χ
clique(k,m), κ̂χ−exp

clique (k,m), χ̂κ
clique(k,m)

with the condition Gn ∈ A (n, 1, r), where r ∼ rclique(k) as n→∞. Of course, that
a graph can be drawn on a sphere of the asymptotically smallest radius is hardly
more apparent than that it can be drawn on a sphere of the strictly smallest radius.
For this reason let us introduce the corresponding quantities

κ̃χ
clique(k,m), κ̃χ−exp

clique (k,m), χ̃κ
clique(k,m).

With this notation, things are much better. Namely, we take the least prime p
such that an−p < xn. Then the known results of analytic number theory (see [29])
suggest that p ∼ an−xn; this means that (3.4) remains valid with the only change
in the term o(1), which is inessential for us (here in the definition of the graph Hn

we replace the forbidden inner product xn with the quantity x1 = an− p ∼ xn).
Further, for each i ∈ {2, . . . , [k/2]}, we set a = i/k and x = i(i− 1)/(k(k − 1)).

As a result, we arrive at the following theorem.

Theorem 4. The following inequality holds:

χ̃κ
clique(k) > χ̃κ

clique(k, 1) > max
i∈{2,...,k/2}

(a− x)a−x(1− a+ x)1−a+x

aa(1− a)1−a
.

It is easily seen that the maximum value is attained at i = [k/2]. And we arrive
at a remarkable result: for the same value of i both the number of cliques and the
chromatic number attain their maxima. Accordingly, there is no point in looking
for optimal estimates for the quantities

κ̃χ
clique(k,m), κ̃χ−exp

clique (k,m)

separately. They are immediately obtained from the inequalities for χ̃κ
clique(k) and

κ̂clique(k).
In Table 2 we present estimates for the quantity χ̃κ

clique(k) for particular values
of k and i.

It is apparent from Table 2 that i = [k/2] is the point of maximum.
Note that

lim
k→∞

max
i∈{2,...,[k/2]}

(a− x)a−x(1− a+ x)1−a+x

aa(1− a)1−a
=

1
2
33/4 = 1.139 . . . .
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Table 2

i \ k 3 4 5 6 7 8 9 10

2 – 1.0582 1.0641 1.0582 1.0506 1.0436 1.0377 1.0329

3 – – – 1.0857 1.0883 1.0837 1.0769 1.0699

4 – – – – – 1.0995 1.1008 1.0975

5 – – – – – – – 1.1077

Note also that if, in the notation of the quantities considered in this subsubsec-
tion, the hat is not yet changed to tilde, then some estimates can still be derived.
In other words, graphs with exponentially large chromatic numbers also exist on
spheres of exactly (rather than asymptotically) smallest radius. This fact can be
derived from the results of [28]. However, in this case there is no elegant optimiza-
tion and we omit the details to avoid cumbersomeness in our presentation.

In subsequent sections we further improve the estimates obtained. And in the
next subsubsection we accurately summarize all the best results of the present
section in order to make it easier to compare them in the sequel.

3.4. Results of the section. Let us briefly summarize the main results obtained
in this section.

1. Theorem 2 (see § 3.3.3) is established, which states that

κ̂clique(k) > κ̂clique(k, 1) > max
i∈{1,...,k−1}

log k

ii/k(k−i)(k−i)/k
Ci

k.

In the framework of the {0, 1}-case this theorem is optimal (§§ 3.3.1, 3.3.2).
2. It has been established that in item 1 above the maximum value is attained

for i = [k/2]. On the one hand, we present Table 1, which contains eval-
uations of this estimate for k 6 10 (see § 3.3.4). On the other hand, we
establish Theorem 3 (§ 3.3.4), which states that

κ̂clique(2k) > κ̂clique(2k, 1) > 2k − 1
2

log2(πk) + o(1).

Although the estimate is very close to the highest possible one and the cor-
responding evaluations in the table are rather high, these results are subject
to further improvement.

3. It is shown that in the framework of the {0, 1}-case the quantity κ̂χ
clique(3)

obeys the same bound as the quantity κ̂clique(3) (see item 1 above and
§ 3.2.4). However, the quantities κ̂χ−exp

clique (3) and χ̂κ
clique(3) cannot be esti-

mated in the framework of the same case; moreover, neither can their
analogues ‘with tildes’ (see §§ 3.2.4, 3.3.5). This is an essential drawback
observed in the {0, 1}-case.

4. Reasons have been given for replacing the quantities

κ̂χ
clique(k,m), κ̂χ−exp

clique (k,m), χ̂κ
clique(k,m)
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with the quantities

κ̃χ
clique(k,m), κ̃χ−exp

clique (k,m), χ̃κ
clique(k,m),

which satisfy some nontrivial estimates for k > 4. In particular, Theorem 4
(see § 3.3.5) states that

χ̃κ
clique(k) > χ̃κ

clique(k, 1) > max
i∈{2,...,[k/2]}

(a− x)a−x(1− a+ x)1−a+x

aa(1− a)1−a
.

5. It has been established that in item 4 above the maximum value is attained
for i = [k/2]. A table of evaluations of this estimate for k 6 10 is presented
(see § 3.3.5). The limit of this estimate as k → ∞ has been obtained. All
these results can be improved.

As a result, the main objects of further investigation are the quantities κ̂clique(k)
(whose explicit and asymptotic estimates are of interest) and χ̃κ

clique(k) (the case
k = 3 is of particular importance, and the explicit and asymptotic estimates for
any k are interesting as well).

§ 4. Constructions with {−1, 0, 1}-points

This section is organized in exactly the same way as the previous section. To
obtain the desired estimates we shall employ graphs belonging to the class A ′(n, 2).
In § 4.1 we describe the general properties of such graphs. In § 4.2 we investigate
triangles. Subsection 4.3 is devoted to arbitrary k-cliques. In § 4.4 we summarize
the results of this section together with those of § 3 (see § 3.4).

4.1. General properties of graphs in the class AAAAAAA ′(n, 2). If a graphG belongs
to the class A ′(n, 2), then each of its vertices has l1 coordinates with the value of 1,
l−1 coordinates with the value of −1, and l0 = n − l1 − l−1 zero coordinates. In
§ 3.1 and in § 3.2.2 we saw that we lose almost nothing if we write the quantities
like li in the form of the product of some (rational) constant and the dimension n
and assume that such product is a positive integer. In this case everything becomes
much easier from the technical viewpoint. It is clear that in this section we can
introduce similar notation as well. We set l1 = an, l−1 = bn, and assume without
loss of generality that a ∈ (0, 1) and 0 < b 6 a. Moreover, a + b < 1. The cases
a = 0, b = 0, and a + b = 1 are not considered here since they have already been
examined in the previous section.

Further, the edges may still be specified using the forbidden inner product. For
reasons of convenience we shall represent this value in the form −xn.

As in § 3, we shall finally consider graphs which are specified by parameters
a, b and x. It is evident that these graphs lie on a sphere centred at the point
(a− b, . . . , a− b). The squared radius of this sphere equals

an(1− a+ b)2 + bn(−1− a+ b)2 + (1− a− b)n(a− b)2 = n(a+ b− (a− b)2).
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At the same time the squared length of the edge of our graph can be expressed
as d2 = 2|v|2 − 2(u,v), where the vertices u and v form an edge. We have d2 =
2n(a+ b+x). Thus, after normalization we obtain a graph H ∈ A ′(n, 2, r′), where

r′ =

√
a+ b− (a− b)2

2(a+ b+ x)
. (4.1)

4.2. Triangles. This subsection is divided into three parts. In § 4.2.1 we give an
example of construction which allows the derivation of new estimates for the quan-
tities κ̂clique(3, 2), κ̂clique(3). In § 4.2.2 we show that the construction presented in
§ 4.2.1 is optimal. Subsection 4.2.3 is devoted to chromatic numbers. In particular,
we shall see that the case of {−1, 0, 1}-points is radically better than the one consid-
ered earlier: in the framework of this case exponential estimates for the chromatic
number can be derived, and hence it is reasonable to look for optimal estimates for
the quantities κ̂χ−exp

clique (3) and χ̃κ
clique(3).

4.2.1. The case a = b = x. In this case r′ = 1/
√

3 = rclique(3), as required. It is
easily seen that for all a 6 1/3 the corresponding graph Gn in the class A ′(n, 2, r′)
contains triangles. The most frequently occurring construction of a triangle (before
normalization) has the form

1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0
−1 −1 0 0 1 1 0 0 −1 −1 1 1 0 0 0 0
0 0 −1 −1 0 0 1 1 1 1 −1 −1 0 0 0 0

Here a = 1/4. Clearly, the number of such constructions for a < 1/3 is

Can
n Can

n−an(Can/2
an )2Can

n−2anC
an/2
an =

(
23a

(1− 3a)1−3aa3a
+ o(1)

)n

(we omit the integer parts, since after all they affect only the term o(1) in the base
of the power expression). Thus,

X3(Gn) >

(
23a

(1− 3a)1−3aa3a
+ o(1)

)n

.

It can be demonstrated that this inequality is unimprovable (only o(1) can be
changed), but we shall not go into details here (or rather we refer the reader to
§§ 4.3.2, 4.3.3).

Further,

N(Gn) =
(

1
(1− 2a)1−2aa2a

+ o(1)
)n

.

As a result, we obtain

Theorem 5. For any a < 1/3 the following estimate is valid:

κ̂clique(3) > κ̂clique(3, 2) > log 1
(1−2a)1−2aa2a

(
23a

(1− 3a)1−3aa3a

)
.
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Taking the numerical maximum with respect to a in Theorem 5, for a=0.2144 . . .
we obtain the estimate

κ̂clique(3) > κ̂clique(3, 2) > 1.8404 . . . ,

and this is much higher than 1.7261 . . . obtained in Theorem 1.

4.2.2. The estimate established in Theorem 5 is optimal. The following proposition
is valid.

Proposition 4. Suppose that a graph Gn ∈ A ′(n, 2, rclique(3)) is obtained by nor-
malization of a graph Hn ∈ A ′(n, 2) determined by parameters a, b and x, and
at the same time ω(Gn) = ω(Hn) = 3, that is, the graphs Gn and Hn contain
triangles. Without loss of generality it may be supposed that a > b. Then either
a = b = x, 0 < b 6 1/3, or a− b = 1/3, b = x, 0 < b 6 1/3.

Proposition 4 will be established later as a consequence of a similar general result
for k-cliques (see § 4.3).

Proposition 4 suggests that, in addition to the case considered in the previous
subsubsection, there is at least one more situation in which the graphs we are inter-
ested in lie on spheres of minimum radius and at the same time contain triangles.
Thus, to prove the optimality of the estimate in Theorem 5 one should look for
constructions with parameters a − b = 1/3, b = x, 0 < b 6 1/3 and, if such con-
structions exist, make sure that they provide weaker estimates for the quantity
κ̂clique(3).

First of all, let us understand why for the values of the parameters mentioned
above we have r′ = 1/

√
3. As a matter of fact, a = b+ 1/3, whence it follows that

a+ b− (a− b)2

2(a+ b+ x)
=
a+ b− 1/9
2(a+ 2b)

=
2b+ 2/9

2(3b+ 1/3)
=

1
3
.

Now let us present a typical construction of a triangle (before normalization):

1 1 1 1 −1 −1 1 1 0 0 0 0
1 1 −1 −1 1 1 0 0 1 1 0 0
−1 −1 1 1 1 1 0 0 0 0 1 1

Here a = 1/2 and b = x = 1/6. In the general case the construction is as follows.
First we choose a set B1 consisting of bn coordinate positions for the value of −1
at the first vertex of the triangle. Then we fix a set B2 which is disjoint from B1

and consists of bn coordinate positions for the value of −1 at the second vertex of
the triangle; after that we choose B3 similarly: B3∩B1∩B2 = ∅, |B3| = bn, where
B3 is the set of coordinate positions for the value of −1 at the third vertex of the
triangle; then at the ith vertex we fill all coordinate positions belonging to the set
(B1 ∪ B2 ∪ B3) \ Bi with 1s, and after that an− 2bn 1s are still to be filled in at
each vertex; we arrange the corresponding coordinate positions in three mutually
disjoint sets of cardinality (a− 2b)n embedded in a set of cardinality n− 3bn (here,
of course, (3a − 6b)n = n − 3bn, as long as we have a − b = 1/3). As a result, for



1456 A.B. Kupavskii and A.M. Raigorodskii

b < 1/3 we obtain

N(Gn) = Cbn
n C

(b+1/3)n
n−bn =

(
1

bb(b+ 1/3)b+1/3(2/3− 2b)2/3−2b
+ o(1)

)n

,

X3(Gn) > Cbn
n Cbn

n−bnC
bn
n−2bnC

(a−2b)n
n−3bn C

(a−2b)n
(1−a−b)n =

(
1

b3b(1/3− b)1−3b
+ o(1)

)n

.

(It can be demonstrated that the estimate for X3 is asymptotically unimprovable,
but we shall not labour the point; rather we refer the reader to §§ 4.3.2 and 4.3.3.)

This immediately yields the estimate

κ̂clique(3) > κ̂clique(3, 2) > log 1
bb(b+1/3)b+1/3(2/3−2b)2/3−2b

(
1

b3b(1/3− b)1−3b

)
.

Numerical optimization shows that the maximum value is attained for b ≈ 0.056
and this maximum value is equal to 1.813 . . . . Since 1.813 < 1.84, this proves the
optimality of the estimate obtained in § 4.2.1.

4.2.3. On chromatic numbers. As in § 3.3.5, we shall finally employ the linear alge-
bra method. As we now understand, this method is based on the primality of various
numbers. For this reason we turn directly to the quantities κ̃χ

clique(3), κ̃χ−exp
clique (3)

and χ̃κ
clique(3), that is, we allow the desired graphs to lie on spheres of asymptoti-

cally minimal, rather then strictly minimal radius. First of all we shall investigate
the ‘kappa-type’ quantities. It turns out that in this case the first of these quan-
tities is of no concern at all. The point is that we shall manage to estimate the
second quantity exactly as the quantity ‘kappa hat’ investigated in § 4.2.1. In other
words, we shall demonstrate that a slight modification of the graph on which the
estimate κ̂clique(3) > 1.8404 . . . is realized gives a new graph which lies on a sphere
of radius ∼ 1/

√
3, exhibits the same relationship between the number of vertices

and triangles, and has exponentially large chromatic number. Thus, we arrive at

Theorem 6. The following estimate holds: κ̃χ−exp
clique (3) > 1.8404.

Proof. Let a ≈ 0.2144 be the rational number on which the estimate κ̂clique(3) >
1.8404 . . . is realized. We assume that an integer n is such that not only is the
number an an integer, but in addition, it is an even integer. It is easily seen that,
as usual, this assumption does not affect the desired estimates (cf. § 3.2.2). Take
the minimum prime p such that 2an− 4p < −an. As in § 3.3.5, we refer to [29] in
asserting that p ∼ 3an/4. Take b = a and consider the value y = 2an− 4p ∼ −an
as the forbidden value of inner product. Note that y = −xn; however, here x is not
a constant as it was everywhere earlier, but only an asymptotic constant: x ∼ a.
It is for this reason that we have changed the notation.

Consider the graphs Hn ∈ A ′(n, 2) determined by the parameters a, b and the
forbidden inner product y, as well as the corresponding graphs Gn ∈ A (n, 2, r′).
Since y ∼ −an, our graphs Gn have the same asymptotic characteristics as the
graphs denoted the same in § 4.2.1: they exhibit the same relationship between the
number of vertices and triangles and r′ ∼ rclique(3) = 1/

√
3. Hence, verifying that

χ(Gn) = χ(Hn) > (c+ o(1))n, c > 1, will complete the proof of the theorem.
We shall employ the estimate χ(G) > |V (G)|/α(G) (see § 3.3.5). It is evident

that |V (Hn)| = C2an
n Can

2an. We see that α(Hn) 6 C2an
n

∑p−1
i=0 C

i
2an. Take t = C2an

n
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and let A1, . . . , At be all the 2an-element subsets of the set {1, . . . , n}. Further,
let Vi ⊂ V (Hn) be the totality of all vector strings whose coordinates containing
the values ±1 comprise the set Ai. Certainly, V (Hn) = V1 ⊔ · · · ⊔ Vt and α(Hn) 6
tα(Hn|V1). Introduce the notation Fn = Hn|V1 . Without loss of generality it may
be assumed that the vertices of the graph Fn correspond to 2an-dimensional vectors
with the same number of coordinates equal to 1 and −1. As before, the edges of
Fn are determined by the inner products y. Let us show that α(Fn) 6

∑p−1
i=0 C

i
2an.

First, it is easily seen that for any x,y ∈ V (Fn) we have (x,y) ≡ 0 (mod 4).
This is because for each vector the numbers of components equal to 1 and to −1
are both even and the inner product of any vector with itself, being equal to 2an,
is divisible by 4. Hence, the inner product can be congruent to 2an modulo p only
when it equals 2an (the vectors coincide) or 2an − 4p (the vectors form an edge):
numbers of the form 2an − p, 2an − 2p, and so on, are not divisible by four, and
2an − 8p < −4an, whereas in our case the least inner product of vertex vectors
is −2an.

We construct polynomials Px ∈ Zp[y1, . . . , y2an] associated with the vertices x
of the graph Fn, x = (x1, . . . , x2an),

Px(y) =
∏
j∈J

(j − (x,y)), J = {1, . . . , p} \ {2an mod p},

y = (y1, . . . , y2an), y2
l = 1, l ∈ {1, . . . , 2an}.

The degree of each polynomial of this kind is p − 1, and owing to the equalities
y2

l = 1, the degree of such a polynomial in each of the variables is at most one. Thus,
all polynomials Px lie in a space of dimension

∑p−1
i=0 C

i
2an. We take an arbitrary

independent set of vertices W = {x1, . . . ,xs} (that is, (xi,xj) ̸= 2an−4p for i ̸= j),
and see that the polynomials Px1 , . . . , Pxs are linearly independent over Zp. Thus,
the required estimate is established.

Finally, we have

χ(Hn) >
|V (Hn)|
α(Hn)

>
C2an

n Can
2an

C2an
n

∑p−1
i=0 C

i
2an

=
Can

2an∑p−1
i=0 C

i
2an

=
((

3
4

)3a/4(5
4

)5a/4

+ o(1)
)n

> (1.013)n

for large values of n, which completes the proof of the theorem.

Now let us consider the quantity χ̃κ
clique(3). It is quite easy to establish the

following fact.

Theorem 7. The following estimate holds: χ̃κ
clique(3) > 1.021.

Proof. In the proof of Theorem 6 we constructed graphs Hn which were uniquely
determined by the value of the parameter a ≈ 0.2144. Actually, one may similarly
define a sequence of graphs for a ∈ (0, 1/3). And all our reasonings apply to this case
as well. Namely, for any a in this interval, we have X3(Hn) > Nκ(Hn) with κ > 1
and

χ(Hn) >

((
3
4

)3a/4(5
4

)5a/4

+ o(1)
)n

.



1458 A.B. Kupavskii and A.M. Raigorodskii

It is easily seen that the maximum value of the expression (3/4)3a/4(5/4)5a/4 is
attained at a = 1/3, and this maximum value equals 1.021 . . . . Taking a ∈ Q
close enough to 1/3 so as to satisfy the inequality (3/4)3a/4(5/4)5a/4 > 1.021, we
guarantee that Hn possesses all the desired properties. The proof of the theorem
is complete.

Actually, we have one more situation remaining: the case a−b = 1/3. Curiously,
in this situation there is nothing to be had: there is no value of b for which the
linear algebra method gives any substantial (that is, exponential) estimates. This
can be shown in a formal way, but we need hardly go into details here. As a result,
we have the inequality established in Theorem 7, and it is the best estimate we
have so far.

4.3. Cliques with an arbitrary value of k. This subsection is organized exactly
as the same-titled § 3.3. In § 4.3.1 we present necessary conditions for the existence
of a clique in a graph of the class A ′(n, 2, rclique(k)). In § 4.3.2 we show that these
conditions are actually sufficient as well. Subsubsections 4.3.3 and 4.3.4 are devoted
to deriving estimates for the number of cliques, and in § 4.3.5 we discuss chromatic
numbers.

4.3.1. Necessary conditions for the existence of a k-clique. The following proposi-
tion holds.

Proposition 5. Let k > 3. Suppose that the graph Gn ∈ A ′(n, 2, rclique(k)) is
obtained by normalization of a graph Hn ∈ A ′(n, 2) determined by parameters a,
b and x, and at the same time ω(Gn) = ω(Hn) = k , which is to say that the
graphs Gn and Hn contain k-cliques. Without loss of generality it may be assumed
that a > b. Then the quantity a − b must have the form a − b = s/k for some
(arbitrary) s ∈ {0, . . . , k − 2}, and the corresponding value of x must be equal to
(a+ b− k(a− b)2)/(k − 1). At the same time, 2⌈bk⌉ 6 k − s.

It is immediately seen why Proposition 4 is a direct corollary of Proposition 5.
Indeed, in Proposition 4 we have the equality k = 3. By Proposition 5 we have
s ∈ {0, 1}. If s = 0, then a = b and x = 2a/2 = a = b. Moreover, 2⌈3b⌉ 6
3 − 0 = 3, whence it follows that b 6 1/3. And if s = 1, then a − b = 1/3,
x = (2b + 1/3 − 3 · 1/9)/2 = b, and 2⌈3b⌉ 6 3 − 1 = 2, whence it follows that
b 6 1/3.

Proof of Proposition 5. It is quite natural to expect that here we shall in some
way generalize the idea of the proof of Proposition 1. And this is indeed what we
shall do.

Consider an arbitrary k-clique Kk ⊂ Hn. Its vectors form a matrix (cf. §§ 3.3.1
and 3.3.2), which we denote by Mk: this matrix has k rows and n columns and its
entries are the numbers −1, 0, 1. Denote by lj , j ∈ {1, . . . , n}, the number of −1s
in the jth column and by sj the difference between the number of 1s and −1s in
the same column. In each row of the matrix the difference between the number of
1s and −1s is (a− b)n. Hence, in total, the matrix Mk contains k(a− b)n more 1s
than −1s. On the other hand, the same difference may be calculated as the total
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sum of the differences in each column. As a result, we obtain the equality
n∑

j=1

sj = k(a− b)n.

Now let us take the sum of all pairwise inner products. Each of them equals −xn
since Kk forms a clique in Hn. In total, we have −C2

kxn. On the other hand, we
can consider the contribution to the total sum made by each column of the matrix
Mk. As we know, the jth column contains lj −1s and lj + sj 1s. Hence, the
contribution of this column is

C2
lj + C2

lj+sj
− lj(lj + sj) = −lj +

s2j − sj

2
.

Summing up these quantities, we obtain the equality
n∑

j=1

(
−lj +

s2j − sj

2

)
= −C2

kxn.

It is easily seen that
∑n

j=1 lj = kbn, whence it follows that

− kbn+
n∑

j=1

s2j − sj

2
= −C2

kxn

⇐⇒ k(k − 1)xn = 2kbn−
n∑

j=1

sj(sj − 1) = k(a+ b)n−
n∑

j=1

s2j .

As a result, we arrive at the system of equations

n∑
j=1

sj = k(a− b)n,

k(k − 1)xn = k(a+ b)n−
n∑

j=1

s2j .

(4.2)

As in § 3.3.1, we also keep in mind the fact that the graph Gn (this particular
graph Gn) lies on a sphere of minimum radius. Hence, the value of x (for given
values of a and b) should be as large as possible (see formula (4.1)). The first
equation of system (4.2) suggests that the sum

∑n
j=1 sj is fixed. As in § 3.3.1, we

immediately see with regard to the second equation of system (4.2) that x attains
its largest value if and only if all the sj are equal to the same s ∈ {0, . . . , k − 1}.
Thus, we necessarily have{

s = k(a− b),
k(k − 1)x = k(a+ b)− s2.

(4.3)

Therefore, we in fact have

a− b =
s

k
, x =

a+ b− k(a− b)2

k − 1
.
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Moreover, substituting this value of x into (4.1), we obtain

(r′)2 =
a+ b− (a− b)2

2(a+ b+ x)
=

a+ b− (a− b)2

2(a+ b+ (a+ b)/(k − 1)− k(a− b)2/(k − 1))

=
a+ b− (a− b)2

(2k/(k − 1))(a+ b− (a− b)2)
=
k − 1
2k

= r2clique(k).

It remains to demonstrate that s 6 k − 2 and 2⌈bk⌉ 6 k − s. Assume that
s > k − 1 and that there is a column of the matrix Mk which contains at least
one entry equal to −1. Then the same column contains at least s + 1 1s, which
means that the total number of 1s and −1s in this column is at least s+ 2 > k+ 1.
This is impossible and thus no column of matrix Mk contains entries equal to −1,
which means that there are no −1s in the matrix at all, and this is also impossible
(we have b > 0). Now let us establish the second inequality. By the pigeonhole
principle the matrix Mk has a column containing at least ⌈(bn)k/n⌉ entries equal
to −1. Then, however, the same column contains at least ⌈(bn)k/n⌉+s 1s. Hence,⌈

(bn)k
n

⌉
+

⌈
(bn)k
n

⌉
+ s = 2⌈bk⌉+ s 6 k,

which was to be shown.
The proof of the proposition is complete.

4.3.2. Sufficient conditions for the existence of a k-clique. The following assertion
holds.

Proposition 6. Let k > 3, s ∈ {0, . . . , k − 2}, and let b satisfy 2⌈bk⌉ 6 k − s.
Suppose that the graph Gn ∈ A ′(n, 2, rclique(k)) is obtained by normalization of
a graph Hn ∈ A ′(n, 2) determined by the parameters b, a = b + s/k and x =
(a + b − k(a − b)2)/(k − 1). Consider arbitrary nonnegative rational numbers n′j
satisfying the system of equations

[(k−s)/2]∑
j=0

jn′jC
j
kC

j+s
k−j = kb,

[(k−s)/2]∑
j=0

n′jC
j
kC

j+s
k−j = 1,

(4.4)

and let n be such that the numbers nj =n′jn are integers. Then ω(Gn)=ω(Hn)=k .

Proposition 6 has a similar meaning to Proposition 2. In Proposition 2 it was
required that n be divisible by some Ci

k, and for further reasonings only the fact
that Ci

k is a fixed number was important. Here, the conditions of divisibility of
n appear more complicated. However, the point is still that the numbers n′j are
enclosed in some fixed limits. The question may arise of their existence. However,
it is easily seen that such numbers always exist. Indeed, since s 6 k−2, the integer
t = [(k − s)/2] is nonzero. Let us set the numbers n′1, . . . , n′t−1 equal to zero (of
course, if t > 2). Then only n′0 and n′t will remain in system (4.4). We know
that 2⌈bk⌉ 6 k − s, whence it follows that bk 6 t and, therefore, n′tCt

kC
t+s
k−t 6 1
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(by virtue of the first equation of the system); in this case n′t is rational and positive.
The second equation of the system yields n′0Cs

k = 1 − n′tC
t
kC

t+s
k−t > 0, and so n′0 is

also rational and nonnegative. In general, there are usually many more solutions.
Below we shall consider the optimal choice of the parameters which will also include
the numbers n′j . Then it will become quite apparent that the problem consists not
of finding out whether the system has a solution, but of organizing an accurate
search through such solutions in order to find the best one in some sense.

Let us give two more useful examples. First, let k = 3, s = 0. Then a = b = x,
which means that we are in the situation of § 4.2.1. System (4.4) assumes the form{

6n′1 = 3a,
n′0 + 6n′1 = 1;

(4.5)

so n′0 = 1 − 3a, n′1 = a/2 and for any a 6 1/3 these numbers are well-defined.
Moreover, they appear explicitly in § 4.2.1 and this is discussed further below.
Second, let k = 3, s = 1. Then we are in the situation of § 4.2.2, in which we
definitely have n′0 = 1/3 − b, n′1 = b. These parameters also appear explicitly in
§ 4.2.2 and this is also given attention below.

Thus, Proposition 6 states that Proposition 5 is unimprovable in the sense that
under the appropriate requirement of divisibility of n the necessary conditions turn
out to be sufficient. Let us prove it.

Proof of Proposition 6. We shall construct the desired clique in the form of a matrix
Mk. Let n′0, . . . , n′t be some roots of system (4.4). We shall take only those
n′j1 , . . . , n

′
jr

which are strictly positive and consider the corresponding nj1 , . . . , njr .
Let the first Cj1

k C
j1+s
k−j1

columns of the matrix Mk be all possible vectors having j1
entries equal to −1 and j1 + s entries equal to 1. Duplicating the block defined
above nj1 times we form the first part of the matrix Mk consisting of nj1C

j1
k C

j1+s
k−j1

columns. We continue to the right with a similar portion of nj2C
j2
k C

j2+s
k−j2

columns,
which consists of nj2 blocks, each containing all possible vector columns with j2
entries equal to −1 and j2 + s entries equal to 1. Proceeding in this way until the
indices j1, . . . , jr are exhausted we obtain a matrix containing, exactly as we need,
k rows and

r∑
ν=1

njν
Cjν

k Cjν+s
k−jν

=
t∑

j=0

njC
j
kC

j+s
k−j =

t∑
j=0

n′jnC
j
kC

j+s
k−j = n

t∑
j=0

n′jC
j
kC

j+s
k−j = n

columns.
It remains to verify that each row of the matrix Mk contains exactly bn entries

equal to −1 and an entries equal to 1, and that the inner product of each pair of
vector rows of this matrix equals −xn. It is evident that, by construction, all rows
of Mk contain the same number of entries equal to −1 and the same number of
entries equal to 1. At the same time the total (over the entire matrix) number of
entries equal to −1 is kbn in view of the first equation of system (4.4). And the
total number of entries equal to 1 is kbn+sn = kn(b+s/k) = kan. Thus, it remains
to calculate the inner products.

Again, it is clear that all inner products are equal. They are calculated as follows.
Without loss of generality we take the first two rows of the matrix Mk and consider
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any block of this matrix corresponding to some index j ∈ {j1, . . . , jr}. Within this
block the rows under consideration have the same positions with entries equal to −1
in Cj−2

k−2C
j+s
k−j cases, the same positions with entries equal to 1 in Cj

k−2C
j+s−2
k−j−2 cases,

and the entry equal to −1 is below or above the entry equal to 1 in 2Cj−1
k−2C

j+s−1
k−j−1

cases. As a result, the contribution of this block to the inner product under study is

Cj−2
k−2C

j+s
k−j − 2Cj−1

k−2C
j+s−1
k−j−1 + Cj

k−2C
j+s−2
k−j−2.

Hence, the entire inner product equals

t∑
j=0

nj(C
j−2
k−2C

j+s
k−j − 2Cj−1

k−2C
j+s−1
k−j−1 + Cj

k−2C
j+s−2
k−j−2)

=
t∑

j=0

njC
j
kC

j+s
k−j

(
j(j − 1)
k(k − 1)

− 2j(j + s)
k(k − 1)

+
(j + s)(j + s− 1)

k(k − 1)

)

=
1

k(k − 1)

t∑
j=0

njC
j
kC

j+s
k−j(s

2 − s− 2j) =
(s2 − s− 2kb)n

k(k − 1)

= n
−2b− s/k + s2/k

k − 1
= n

−a− b+ k(a− b)2

k − 1
= −xn.

The proof of the proposition is complete.

Let us turn once again to the cases k = 3, s = 0 (§ 4.2.1) and k = 3, s = 1
(§ 4.2.2). As we know, in the first of these situations, n′0 = 1 − 3a, n′1 = a/2. If
we look closely at the construction of the triangle in § 4.2.1, then we shall see that
it actually represents the matrix Mk described in the proof of Proposition 6. In
this matrix, r = 2, j1 = 0, and j2 = 1, which is to say that both the numbers n′0
and n′1 are taken into account. Moreover, n = 16, a = 1/4, the only vector column
containing no entries equal to −1 and no entries equal to 1 (since s = 0) appears
exactly n0 = n− 3an = 16− 12 = 4 times, six vector columns containing one entry
equal to −1 and one entry equal to 1 are repeated exactly n1 = an/2 = 2 times
each. However, the duplication of the blocks is arranged in a slightly different way,
but it only means that the clique is not unique, and this is the subject of discussion
in the next subsubsection. The situation in the case of § 4.2.2 is quite similar.

4.3.3. An estimate for the number of k-cliques. The following assertion holds.

Theorem 8. Let k > 3, s ∈ {0, . . . , k− 2}, t = [(k− s)/2], and a number b be such
that 2⌈bk⌉ 6 k − s. Consider arbitrary nonnegative rational numbers n′j satisfying
system (4.4) and denote

u =
1

bb(b+ s/k)b+s/k(1− 2b− s/k)1−2b−s/k
, v =

1∏t
j=0(n

′
j)

n′jCj
kCj+s

k−j

.

Here (n′j)
n′j = 1 whenever n′j = 0. Then

κ̂clique(k) > κ̂clique(k, 2) > logu v.
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Let us turn once again to the situations of §§ 4.2.1 and 4.2.2. In the first of these
cases we have

k = 3, s = 0, t = 1, 0 < b <
1
3
, a = b, n′0 = 1− 3a, n′1 =

a

2
,

and therefore

u =
1

a2a(1− 2a)1−2a
, v =

1
(1− 3a)1−3a(a/2)6·a/2

=
23a

(1− 3a)1−3aa3a
.

This agrees completely with Theorem 5. And it is now apparent that Theorem 5
is unimprovable.

In the second case we have

k = 3, s = 1, t = 1, 0 < b <
1
3
, a = b+

1
3
, n′0 =

1
3
− b, n′1 = b,

and therefore

u =
1

bb(b+ 1/3)b+1/3(2/3− 2b)2/3−2b
,

v =
1

(1/3− b)3(1/3−b)b3b
=

1
(1/3− b)1−3bb3b

.

Again this agrees completely with the estimate obtained in § 4.2.2, which means
that the result obtained in that subsubsection is unimprovable as well.

Proof of Theorem 8. Suppose that all parameters in Proposition 6 and Theorem 8
are fixed. Then Proposition 6 provides an explicit construction of a clique. At the
same time, Proposition 5 guarantees that there exists no (other) better construction.
The explicit construction mentioned above can be obtained in many different ways
by rearranging columns in the matrix Mk. The number of such rearrangements
(and thus the number of k-cliques) is

Xk(Gn) =
n!

(n0!)Cs
k(n1!)C1

kCs+1
k−1 . . . (nt!)Ct

kCt+s
k−t

=
(

1∏t
j=0(n

′
j)

n′jCj
kCj+s

k−j

+ o(1)
)n

= (v + o(1))n.

The next-to-last expression is obtained with due account taken of Stirling’s formula,
and it is correct as long as not all the quantities n′j are equal to zero or one.

At the same time,

N(Gn) = Cbn
n Can

n−bn = Cbn
n C

bn+s/k
n−bn = (u+ o(1))n.

The proof of the theorem is complete.
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4.3.4. Optimization in Theorem 8. Following the lines of reasoning presented in
§ 3.3.4, we start by establishing the following theorem.

Theorem 9. The following inequality holds:

κ̂clique(3k) > κ̂clique(3k, 2) > 3k − 1
2

log3 k + o(ln k).

One can see that Theorem 9 improves the similar Theorem 3, since the logarithm
to base three is less than the binary logarithm by a constant factor, and the quantity
o(ln k) is negligible in asymptotics. This already shows that an increase in the
number of coordinates in each of the vectors we deal with is quite promising.

Proof of Theorem 9. We take 3k instead of k in Theorem 8 and put s = 0 and
a = b = 1/3. Let l = [

√
k/ln k] and consider the following solutions to system (4.4):

for j ̸∈ {k−l, k−l+1, . . . , k+l−1, k+l} we put n′j = 0, otherwise, n′jcj = 1/(2l+1),
where cj = Cj

3kC
j+s
3k−j = Cj

3kC
j
3k−j . Indeed,

∑
j

n′jcj =
k+l∑

j=k−l

1
2l + 1

= 1,
∑

j

jn′jcj =
k+l∑

j=k−l

j
1

2l + 1
= k =

3k
3

= 3kb.

It is easily seen that for our choice of the parameters u = 3. Let us find v. Note
that for any j1, j2 ∈ {k− l, k− l+1, . . . , k+ l−1, k+ l} we have cj1 ∼ cj2 . This can
be demonstrated by standard calculations with due account taken of the relation
l = o(

√
k). Moreover, since l has a particular form, one can find a function ψ(k)

which tends to zero with an increase in k and satisfies the relation |cj1/cj2 − 1| =
|n′j2/n

′
j1
− 1| < ψ(k). Hence,

∏
j

(n′j)
n′jcj = (1 + o(1))

k+l∏
j=k−l

(n′k)1/(2l+1) = (1 + o(1))n′k =⇒ v = ck(2l + 1).

As a result, (by Stirling’s formula) we have v ∼ 33k(2l + 1)/(ck) for some constant
c > 0, whence it follows that v > 33k/(c′

√
k ln k) and

logu v > log3

33k ln k
c′
√
k

= 3k − 1
2

log3 k +O(ln ln k).

The proof of the theorem is complete.

Evidently, the choice of the parameters in Theorem 9 is not optimal. There-
fore, to obtain the best possible estimates, we need to perform a rather sophis-
ticated optimization (compare this with the remark that follows the statement
of Proposition 6). Such optimization was carried out by I.M. Mitricheva using
computer-based calculations: for small values of k she obtained the following eval-
uations of the estimate established in Theorem 8 (see Table 3).

One can see that each time the maximum value (highlighted in bold) is attained
at s = 0, and thus the estimate of Theorem 9 is not that far from optimality. It is
also apparent that the new estimates are significantly sharper than those derived
in § 3.3.4.
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Table 3

s \ k 3 4 5 6 7 8 9 10

0 1.8404 2.7207 3.6253 4.5461 5.4785 6.4195 7.3672 8.3203

1 1.8130 2.6986 3.6084 4.5329 5.4679 6.4108 7.3599 8.3140

2 – 2.6287 3.5545 4.4911 5.4347 6.3837 7.3373 8.2948

3 – – 3.4489 4.4127 5.3738 6.3349 7.2972 8.2612

4 – – – 4.2740 5.2738 6.2578 7.2354 8.2102

5 – – – – 5.1037 6.1379 7.1436 8.1367

6 – – – – – 5.9374 7.0047 8.0312

7 – – – – – – 6.7747 7.8740

8 – – – – – – – 7.6153

4.3.5. On chromatic numbers. It is more or less clear that here one should expect
to see much the same situation as in § 4.2.3. And it is indeed so: actually, we
can deal only with the quantities κ̃χ−exp

clique (k) and χ̃κ
clique(k). For the first of these

quantities, a complete analogue of Theorem 6 holds.

Theorem 10. The quantities κ̃χ−exp
clique (k) obey exactly the same lower bounds as the

quantities κ̂clique(k). In other words,

κ̃χ−exp
clique (3) > 1.8404, κ̃χ−exp

clique (4) > 2.7207, κ̃χ−exp
clique (k) > 3.6253, . . . .

Proof. We know that the best possible estimates for the quantity κ̂clique(k) are
obtained for a = b (see § 4.3.4). Therefore, we can reproduce the proof of Theorem 6
almost verbatim. The only difference lies in the choice of the prime number p. In
Theorem 6 it was taken as the least prime such that 2an− 4p < −an. In that case
x = a. However, here we have x = 2a/(k − 1) and thus we should take the least p
satisfying the condition 2an− 4p < −2a/(k − 1)n, so that p ∼ ak/(2(k − 1)n). As
a result, we have

χ(Hn) >
Can

2an∑p−1
i=0 C

i
2an

= (c(a, k) + o(1))n,

where the value of c(a, k) is larger than 1 for any admissible a and k. The proof of
the theorem is complete.

In estimating the quantity χ̃κ
clique(k) we can proceed in the same way as in

Theorem 7: for a given value of k optimize the quantity c(a, k) introduced in the
proof of Theorem 10 with respect to a. At the same time it should be taken into
account that in our case (when s = 0) we have 2⌈ak⌉ 6 k, which means that
a 6 1/k[k/2]. Thus, we have established the following theorem.

Theorem 11. The following estimate holds:

χ̃κ
clique(k) > max

a61/k[k/2]
c(a, k) =: c(k).
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In particular, for k = 3 we arrive exactly at the bound 1.021 obtained in Theo-
rem 7. One can further vary the value of s, but it presents severe technical difficul-
ties, and we shall not perform such optimization. Instead, we shall prove one more
theorem which, like Theorem 11, relies on the linear algebra method, but employs
it in a somewhat different way. And in most situations the estimate derived in this
new theorem will be sharper than the one in Theorem 11.

Thus, suppose that a 6 1/k[k/2] and let p be the smallest prime such that
2an− p < −2a/(k − 1)n; so, p ∼ 2ak/(k − 1)n. Denote

S(a, k, n) =
C2an

n Can
2an∑

i C
i
nC

p−1−2i
n−i

,

where summation in the denominator is taken over all admissible values of i. It can
be shown by standard calculations that for any k > 3 we have

sup
a
S(a, k, n) = (c′(k) + o(1))n,

where the function c′(k) satisfies c′(k) > 1 and depends only on k. Here, we
take supremum rather than maximum, since it is assumed, as usual, that a ∈ Q
(otherwise the quantity S(a, k, n) is not defined either).

Theorem 12. Let k > 3 and c′(k) be the function introduced above. Then

χ̃κ
clique(k) > c′(k).

Proof. Let us fix k > 3, ε > 0, and a quantity a ∈ Q for which

S(a, k, n) > (c′(k)− ε+ o(1))n.

We put y = 2an − p ∼ −2a/(k − 1)n. As in Theorem 6, consider the graphs
Hn ∈ A ′(n, 2) determined by the parameters a, b = a, and by the forbidden
inner product y, as well as the corresponding graphs Gn ∈ A (n, 2, r′). Since
y ∼ −2a/(k−1)n, the graphs Gn have the desired asymptotic characteristics: they
exhibit the appropriate relationship between the number of vertices and the number
of k-cliques (that is, κ > 1) and r′ ∼ rclique(k). Thus, if we demonstrate that

χ(Gn) = χ(Hn) > S(a, k, n),

then, due to the arbitrary choice of ε, it will prove the theorem.
We proceed as in the proof of Theorem 6:

χ(Hn) >
|V (Hn)|
α(Hn)

=
C2an

n Can
2an

α(Hn)
,

with the only difference being that the denominator is estimated in another way
by

∑
i C

i
nC

p−1−2i
n−i . To do this we take the polynomials Px ∈ Zp[y1, . . . , yn] that
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correspond to the vertices x of the graph Hn, x = (x1, . . . , xn),

Px(y) =
∏
j∈J

(j − (x,y)), J = {1, . . . , p} \ {2an mod p},

y = (y1, . . . , yn), y3
l = yl, l ∈ {1, . . . , n}.

The degree of each polynomial of this kind is p − 1, and owing to the equalities
y3

l = yl the degree of such a polynomial in each of the variables is at most two.
Thus, all the polynomials Px lie in a space of dimension

∑
i C

i
nC

p−1−2i
n−i . We take an

arbitrary independent set of vertices W = {x1, . . . ,xs} (that is, (xi,xj) ̸= 2an− p
for i ̸= j) and verify that the polynomials Px1 , . . . , Pxs are linearly independent
over Zp. Thus, the required estimate is established. The proof of Theorem 12 is
complete.

First, let us compare the results provided by Theorems 11 and 12. To do this
we present a table (Table 4) of approximate evaluations of c(k) and c′(k).

Table 4

k c(k) – Theorem 11 c′(k) – Theorem 12
3 1.0212 –
4 1.0583 1.0266
5 1.0594 1.0519
6 1.0858 1.0694
7 1.0797 1.0819
8 1.0995 1.0912
9 1.0920 1.0985
10 1.1077 1.1042
11 1.1002 1.1089
12 1.1131 1.1128
13 1.1059 1.1161
14 1.1170 1.1189
15 1.1102 1.1213

A certain odd behaviour of the quantities highlighted in bold (provided some-
times by c(k) and sometimes by c′(k)) is due to the fact that a 6 1/k[k/2] and that
this bound exhibits jumps as the parity of k is altered. Nevertheless, it is easily
verified that c(k) → 1/2 ·33/4 = 1.139 . . . and c′(k) → 2/

√
3 = 1.154 . . . . Therefore

the apparent superiority of the estimate established in Theorem 12, which starts
with k = 13, is kept for all k > 13.

In § 3.3.5, {0, 1}-vectors were also used to derive estimates for the quantities
χ̃κ

clique(k). It is curious that for odd values of k > 3 they are better than the esti-
mates established in Theorem 11, for k = 3 only Theorem 11 provides an estimate,
and for even values of k the estimates coincide. Thus, all three results are of their
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own importance: Theorem 11 for k = 3, Theorem 4 for small values of k ̸= 3, and
Theorem 12 for large values of k (see Table 5).

Table 5

k Theorem 4 c(k) – Theorem 11 c′(k) – Theorem 12
3 – 1.0212 –
4 1.0583 1.0583 1.0266
5 1.0641 1.0594 1.0519
6 1.0858 1.0858 1.0694
7 1.0883 1.0797 1.0819
8 1.0995 1.0995 1.0912
9 1.1008 1.0920 1.0985
10 1.1077 1.1077 1.1042
11 1.1085 1.1002 1.1089
12 1.1131 1.1131 1.1128
13 1.1137 1.1059 1.1161
14 1.1170 1.1170 1.1189
15 1.1174 1.1102 1.1213
∞ 33/4/2 = 1.139 . . . 33/4/2 = 1.139 . . . 2/

√
3 = 1.154 . . .

4.4. Results of the section. Let us briefly summarize the results of this section
following the lines of the summary in § 3.4.

1. We have proved Theorem 8 (see § 4.3.3), in which, as in Theorem 2 in § 3.3.3,
we established a lower bound for the quantity κ̂clique(k) and which, just as
Theorem 2, is optimal for its particular case (§§ 4.3.1, 4.3.2).

2. Owing to the results mentioned in item 1 we have improved all results in
item 2 of § 3.4: in Table 3 in § 4.3.4 all the best estimates exceed their
analogues in Table 1 in § 3.3.4, and Theorem 9 in § 4.3.4 establishes sharper
asymptotic inequalities than Theorem 3 in § 3.3.4.

3. The problem mentioned in item 3 of § 3.4 is completely rectified. Namely,
in Theorems 6 and 7 in § 4.2.3 we obtained nontrivial estimates for the
quantities κ̃χ−exp

clique (3) and χ̃κ
clique(3).

4. Two nontrivial analogues of Theorem 4 in § 3.3.5 have been established: these
are Theorems 11 and 12 (§ 4.3.5), which improve Theorem 4 both for most
specific values of k (see Tables 4, 5) and as k →∞.

5. It has been demonstrated that, as in the {0, 1}-case, the quantities κ̃χ−exp
clique (k)

can hardly be distinguished from the quantities κ̂clique(k) (Theorem 10 in
§ 4.3.5).



Distance graphs with large chromatic numbers 1469

§ 5. Constructions with {0, 1, . . . , m}-vectors

This section is organized in a somewhat different way from the previous two
sections. Namely, we do not discuss triangles separately. In other respects it has
the same structure. Subsection 5.1 is devoted to the general properties of graphs of
the class A (n,m), in § 5.2 we discuss arbitrary cliques, and in § 5.3 we give a general
summary.

5.1. General properties of a graph of the class AAAAAAA (n, m). We note straight
away that the cases of the equalities m = 1 and m = 2 are allowed. Moreover,
in the last case we shall speak formally of somewhat different objects than those
discussed in the previous section. Therefore, it should be expected that in the case
m = 1 the results will agree completely with those of § 3, and for m = 2 they may
be reduced to the results in § 4 by simple transformations.

Now the line of reasoning is quite standard. If a graph G belongs to the class
A (n,m), then each of its vertices is determined by the parameters l0, l1, . . . , lm,
and we assume, as everywhere above, that li = ain, where ai ∈ (0, 1) ∩ Q and
a0 + · · · + am = 1. The forbidden inner product will be denoted by xn, as it was
in § 3, but not in § 4.

It is evident that the graphs determined by the parameters ai and x lie on
a sphere centred at the point ( m∑

i=0

iai, . . . ,

m∑
i=0

iai

)
.

The square of the radius of such a sphere equals

m∑
j=0

ajn

(
j −

m∑
i=0

iai

)2

=
m∑

j=0

j2ajn−
( m∑

j=0

jaj

)2

n.

At the same time, the squared length of the edge of our graph equals 2
∑m

j=0 j
2ajn−

2xn, which for the corresponding (normalized) graph H ∈ A (n,m, r′) gives

r′ =
(∑m

j=0 j
2aj − (

∑m
j=0 jaj)2

2(
∑m

j=0 j
2aj − x)

)1/2

. (5.1)

This formula is in good agreement with formula (3.2); it may be reduced to formula
(4.1) by changing j = 0, 1, 2 to j = −1, 0, 1 and x to −x.

5.2. Cliques with an arbitrary k. In the previous sections we have completely
paved the way for formulating the most general results. Therefore, we take any
k > 3 and proceed with it. The sequence of subsubsections in this subsection
repeats that in § 4.3.

5.2.1. Necessary and sufficient conditions for the existence of a k-clique. The fol-
lowing assertion holds.
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Proposition 7. Suppose that k > 3 and let a graph Gn ∈ A (n,m, rclique(k)) be
obtained by normalization of a graph Hn ∈ A (n,m) determined by the parameters
a = (a0, . . . , am) and x, and at the same time ω(Gn) = ω(Hn) = k , which is to
say that the graphs Gn and Hn contain k-cliques. Then the quantity

∑m
i=0 iai must

have the form
∑m

i=0 iai = s/k for some (arbitrary) s ∈ N and the corresponding
value of x must be equal to

k(
∑m

i=0 iai)2 −
∑m

i=0 i
2ai

k − 1
.

Moreover, the system 
m∑

i=0

iqi = s,

m∑
i=0

qi = k

(5.2)

should have a solution in nonnegative integers qi , i ∈ {0, . . . ,m}, and the vector ka
should be contained in the convex hull of the set of all its solutions Q = {qj} =
{(qj

0, . . . , q
j
m)}.

Let us find out why the similar Propositions 1 and 5 are particular cases of
Proposition 7. First, consider the {0, 1}-case. Then a0 = 1− a and a1 = a, which
means that a = (1 − a, a). In Proposition 1 we write a = i/k, i ∈ {1, . . . , k − 1}
and in Proposition 7 it is claimed that

∑m
i=0 iai = s/k. However, now we have∑m

i=0 iai =a, and so it is also required that a = s/k. Of course, here s∈{1, . . . , k−1}
too since we have a ∈ (0, 1). Further, in Proposition 1 we have x = i(i−1)/(k(k−1)).
However, in Proposition 7 we also have

x =
ka2 − a

k − 1
=
s2/k − s/k

k − 1
=
s(s− 1)
k(k − 1)

,

and so they completely agree. Thus, Proposition 1 is a corollary of Proposition 7.
We note that in the {0, 1}-case the condition

∑m
i=0 iai = s/k is equivalent to the

condition that the vector ka = k(1 − a, a) belongs to the convex hull of the set Q
since the only solution to system (5.2) is equal to the vector q1 = (k − s, s).

Let us study the relationship between Proposition 5 and Proposition 7. Propo-
sition 5 does not deal with the {0, 1, 2}-case, but rather with the {−1, 0, 1}-case.
Therefore in Proposition 7 we have to make a formal change i 7→ i − 1. The con-
dition

∑m
i=0 iai = s/k reduces to the condition −a−1 + a1 = s/k, and this agrees

well with the condition a− b = s/k. Further, x in Proposition 5 corresponds to −x
in Proposition 7. With the notation of Proposition 5 the corresponding assertion
of Proposition 7 has the form

− x =
k(

∑m
i=0 iai)2 −

∑m
i=0 i

2ai

k − 1
=
k(a− b)2 − b− a

k − 1

⇐⇒ x =
a+ b− k(a− b)2

k − 1
,

and we again arrive at a complete concordance. It remains to show that we neces-
sarily have s ∈ {0, . . . , k − 2} and 2⌈bk⌉ 6 k − s. It is clear that s < k, since for
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s > k we have a− b > 1, which cannot happen. So why do we have s ̸= k − 1 and
2⌈bk⌉ 6 k − s? Here, the condition involving system (5.2) becomes important. In
the {−1, 0, 1}-notation it appears as follows:{

−q−1 + q1 = s,

q−1 + q0 + q1 = k.
(5.3)

First, let us assume that s = k − 1. Then the only solution to (5.3) is equal to the
vector q1 = (0, 1, k − 1). At the same time

ka = k(b, 1− a− b, a) = (bk,−2bk + 1, bk + k − 1).

Such a vector ka can be expressed in terms of q1 only if k = 0, which is impossible.
Hence, s ̸= k−1. Second, let us subtract the first equation in (5.3) from the second:
2q−1 + q0 = k − s. Consequently, 2q−1 6 k − s. We know that ka =

∑
j v

jqj and,
moreover,

∑
j v

j 6 1 and vj > 0. Write this condition for the first coordinate:

bk =
∑

j

vjqj
−1 6 max

j
qj
−1

∑
j

vj 6 max
j
qj
−1 =⇒ 2⌈bk⌉ 6 2 max

j
qj
−1 6 k − s.

As a result, we see that the conditions of Proposition 5 follow from the conditions of
Proposition 7. The inverse implication is verified similarly and thus Proposition 5
is a particular case of Proposition 7.

Proof of Proposition 7. We follow the lines of the proofs of Propositions 1 and 5.
Consider an arbitrary k-clique Kk ⊂ Hn. Its vectors form a matrix Mk: this matrix
contains k rows and n columns and its entries are integers i ∈ {0, 1, . . . ,m}. Denote
by qj

i the number of entries equal to i in the column with index j ∈ {1, . . . , n} and
let sj be the total sum of all entries in the jth column. Certainly, sj =

∑m
i=0 iq

j
i .

As usual, we calculate the total sum of all entries of the matrix Mk in two ways:
n∑

j=1

sj = k

m∑
i=0

iain.

Now consider the sum of the pairwise inner products of the matrix row vectors.
On the one hand, it certainly equals C2

kxn, since Kk is a clique. On the other hand,
denote by dj the contribution to this sum made by the jth column. Then

n∑
j=1

dj = C2
kxn.

Let us find dj , j = 1, . . . , n. To do this we extend the jth column by replacing
each entry equal to i ∈ {1, . . . ,m} by i successive entries equal to 1. Now if we
sum up the pairwise products of different entries of the new column, then we obtain
a number which exceeds the desired contribution by the value

∑m
i=0 C

2
i q

j
i . At the

same time, this number equals C2
sj , whence it follows that

dj = C2
sj −

m∑
i=0

C2
i q

j
i .
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Note also that
∑n

j=1 q
j
i = kain. Thus, we have

n∑
j=1

sj = k

m∑
i=0

iain,

n∑
j=1

dj = C2
kxn

⇐⇒



n∑
j=1

sj = k

m∑
i=0

iain,

n∑
j=1

(
C2

sj −
m∑

i=0

C2
i q

j
i

)
= C2

kxn

⇐⇒



n∑
j=1

sj = k

m∑
i=0

iain,

n∑
j=1

sj(sj − 1)−
m∑

i=0

ki(i− 1)ain = k(k − 1)xn

⇐⇒



n∑
j=1

sj = k

m∑
i=0

iain,

n∑
j=1

(sj)2 −
m∑

i=0

ki2ain = k(k − 1)xn.

Now, as usual, we recall that the graph Gn lies on a sphere of minimum radius.
It follows from relation (5.1) that for given ai, i ∈ {0, . . . ,m}, we have to choose x
as small as possible. However, in view of the last system this means that for a given
sum

∑n
j=1 s

j we need to minimize the sum
∑n

j=1(s
j)2. Hence, we necessarily have

s1 = s2 = · · · = sn = s, and the first equation of the system gives sn = kn
∑m

i=0 iai

or
∑m

i=0 iai = s/k. Then the second equation of the system yields

x =
(k

∑m
i=0 iai)2 − k

∑m
i=0 i

2ai

k(k − 1)
=
k(

∑m
i=0 iai)2 −

∑m
i=0 i

2ai

k − 1
.

Moreover, substituting this expression for x into (5.1) we obtain∑m
i=0 i

2ai − (
∑m

i=0 iai)2

2(
∑m

i=0 i
2ai − (k(

∑m
i=0 iai)2 −

∑m
i=0 i

2ai)/(k − 1))
=
k − 1
2k

= r2clique(k).

It remains to demonstrate that the conditions involving system (5.2) should
necessarily be satisfied. Recall that sj =

∑m
i=0 iq

j
i . But it is known already that for

some s ∈ N we have sj = s, which means that for each j the numbers qj
i obey the

condition
∑m

i=0 iq
j
i = s. Moreover, it is evident that

∑m
i=0 q

j
i = k and, therefore, if

system (5.2) has no nonnegative integer solutions, then there is no way to obtain
the numbers qj

i either. In other words, any vector q ∈ Q is a potential set of the
parameters qj

i characterizing the number of entries equal to i in the jth column
of the matrix Mk. To avoid confusion we reassign indices l ∈ {1, . . . , n} to the
columns of M k. Let qjl ∈ Q be the solution to system (5.2) whose components
represent the aforementioned parameters for the lth column. Again, we note that∑n

l=1 q
jl

i = kain, or, in the vector form,
∑n

l=1 qjl = kan. Suppose that q1 ∈ Q
occurs exactly u1 times among the vectors qjl , q2 ∈ Q occurs exactly u2 times,
and so on. We obtain a new relation∑

j

ujqj = kan ⇐⇒
∑

j

uj

n
qj = ka.
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The last expression suggests that the vector ka lies in the convex hull of the vectors
belonging to Q: it is clear that

∑
uj = n or

∑
uj/n = 1.

The proof of Proposition 7 is complete.

5.2.2. Sufficient conditions for the existence of a k-clique. The following assertion
is valid.

Proposition 8. Let k > 3 and s ∈ N and suppose that for the given values of the
parameters s and k system (5.2) is solvable and the set of solutions of this system
is Q = {qj} = {(qj

0, . . . , q
j
m)}, j ∈ J. Further, suppose that numbers a0, . . . , am are

chosen so as to satisfy the condition
∑m

i=0 iai = s/k and let

x =
k(

∑m
i=0 iai)2 −

∑m
i=0 i

2ai

k − 1
.

Suppose that a graph Gn ∈ A (n,m, rclique(k)) is obtained by normalization of
a graph Hn ∈ A (n,m) determined by the parameters ai and x. For each j ∈ J set

rj =
k!∏m

i=0 q
j
i !

and consider arbitrary nonnegative rational numbers n′j satisfying the system

∑
j∈J

qj
0n
′
jrj = ka0,

. . .∑
j∈J

qj
mn

′
jrj = kam.

(5.4)

Suppose that n is such that the numbers nj = n′jn are integers. Then ω(Gn) =
ω(Hn) = k .

System (5.4) can be rewritten in vector form:
∑

j∈J qjn′jrj = ka. At the same
time, combining all equations in (5.4) and taking into account the second equation
in system (5.2) we obtain

∑
j∈J n

′
jrj = 1. Thus, system (5.4) suggests that the

vector ka lies in the convex hull of the vectors in the set Q. And this means that
Proposition 8 establishes the unimprovability of Proposition 7.

It should also be noted that system (5.4) is a direct generalization of system
(4.4) in Proposition 6, which has a similar meaning. System (4.4) contains one
less equation, but the point is that we can get rid of one of the equations in (5.4)
due to the condition

∑m
i=0 iai = s/k. It is just that we have represented system

(5.4) in a more symmetric form, which is more convenient for the comparison of
Propositions 7 and 8. As a result, all remarks about Proposition 6 also apply to
Proposition 8.

Proof of Proposition 8. As usual, we construct a matrix Mk. To do this we choose
nonzero roots of system (5.4) n′j1 , . . . , n

′
jµ

and consider the corresponding njν
. The

matrix is composed of successive blocks. The first block is formed by all possible
columns containing qj1

0 zero entries, qj1
1 entries equal to 1, . . . , qj1

m entries equal
to m. There are rj1 columns. The block described above is taken nj1 times. Then
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we similarly compose another block, corresponding to the index j2, and take it nj2

times. And we proceed in this way up to jµ. It is evident that the matrix Mk is
well defined. The composition of this matrix is identical with that of the matrix
denoted in the same way in the proof of Proposition 6. And a verification of the
fact that this matrix defines the desired clique is carried out in exactly the same
way. So, we need hardly reproduce it once again here. The proof of Proposition 8
is complete.

5.2.3. Estimating the number of k-cliques. The following assertion holds.

Theorem 13. Let k > 3 and s ∈ N and suppose that for the given values of the
parameters s and k system (5.2) is solvable and the set of solutions to this system
is Q = {qj} = {(qj

0, . . . , q
j
m)}, j ∈ J. Further, suppose that numbers a0, . . . , am are

chosen so as to satisfy the condition
∑m

i=0 iai = s/k . For each j ∈ J we put

rj =
k!∏m

i=0 q
j
i !

and consider arbitrary nonnegative rational numbers n′j satisfying (5.4). Denote

u =
1∏m

i=0 a
ai
i

, v =
1∏

j∈J(n′j)
n′jrj

.

Here (n′j)
n′j = 1 as long as n′j = 0. Then

κ̂clique(k) > κ̂clique(k,m) > logu v.

It is easily seen that Theorem 13 is established in the same way as Theorem 8,
and thus we omit its proof here.

5.2.4. Optimization in Theorem 13. The following assertion is valid.

Theorem 14. The following inequality holds:

κ̂clique(k) > k +O

(
ln k

ln ln k

)
.

In Theorem 14 we significantly strengthen the results of Theorems 3 and 9:
while earlier we reduced k by the logarithm of k, now we subtract something that
is the iterated logarithm times less. This result is obtained due to the optimization
performed in Theorem 13; here, it is essential even to choose the value of the
parameter m appropriately.

Proof of Theorem 14. It may be assumed that k is sufficiently large. We put m =
[ln k/ln ln k], k1 = [k/(m+ 1)], k2 = k1(m+ 1), and note that k2 6 k and

k2 >

(
k

m+ 1
− 1

)
(m+ 1) = k −m− 1 = k − ln k

ln ln k
(1 + o(1)). (5.5)

Let us apply Theorem 13 with k2 substituted for the parameter k involved
therein. In the conditions of Theorem 13 we put

s =
k2m

2
=
k1m(m+ 1)

2
,
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so that, obviously, s ∈ N. Take a0 = a1 = · · · = am = 1/(m+ 1). Then in any case
we have

∑m
i=0 ai = 1 and

m∑
i=0

iai =
1

m+ 1
m(m+ 1)

2
=
m

2
=

s

k2
,

which was to be shown.
Now we need to take a close look at systems (5.2) and (5.4). Certainly, one

of the solutions to system (5.2) is equal to the vector qj0 = (k1, . . . , k1). Let us
present a sufficiently large number of other solutions located ‘symmetrically’ about
qj0 . Namely, we put f = [

√
k1/m

3] and let δ2, . . . , δm be arbitrary integers in the
interval [−f, f ]. Finally, we define

δ1 = −
m∑

i=2

iδi, δ0 = −
m∑

i=1

δi.

Then it is apparent that
∑m

i=0 iδi = 0 and
∑m

i=0 δi = 0, whence it follows that for
any vector qj = (k1 + δ0, . . . , k1 + δm) the system of conditions (5.2) is fulfilled.
Denote by Q′ ⊂ Q the set of all solutions to (5.2) thus obtained and let Q′ =
{qj}j∈J′ , where J′ ⊂ J and j0 ∈ J′. Putting F = |J′| = |Q′| we have F > (2f)m−1.

Let us turn to system (5.4). For each j ∈ J\J′ we set n′jrj = 0; for other values of
j we set n′jrj = 1/F . We have to show that

∑
j∈J′ q

j
in
′
jrj = aik2 = k1 for all values

of i. Evidently, for eachm-tuple (δ0, . . . , δm) ̸= 0 that specifies a vector qj ∈ Q′, the
m-tuple with the entries of opposite sign also specifies a vector ql ∈ Q′. Cancelling
such pairs in the sum

∑
j∈J′ q

j
in
′
jrj = 1/F

∑
j∈J′ q

j
i and taking into account that

|J′| = F we obtain
1
F

∑
j∈J′

qj
i =

1
F

∑
j∈J′

k1 = k1,

as was to be shown.
All the parameters have been chosen. Let us find u and v and verify the inequality

logu v > k + O(ln k/ln ln k). Clearly, we have u = m + 1. Taking into account the
constraint f = o(

√
k1/m

2) and the fact that |qj
i − k1| 6 2fm2 = o(

√
k1) for all i

and j ∈ J′, we obtain

rj ∼ rj0 =
(k1(m+ 1))!

(k1!)m+1
, nj ∼ nj0 , v ∼ Frj0 .

Thus, for sufficiently large values of k, with due regard for Stirling’s formula and
relation (5.5), we have

logu v = logm+1((1 + o(1))rj0F ) > O(1) + logm+1

(
(k1(m+ 1))!

(k1!)m+1
(2f)m−1

)
> O(1) + logm+1

(√
k1(k1(m+ 1))k1(m+1)

(10
√
k1)m+1k

k1(m+1)
1

(2f)m−1

)
= O(1) + logm+1

(
(m+ 1)k1(m+1)

10m+1k
m/2
1

(2f)m−1

)
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= O(1) + k1(m+ 1)− (m+ 1) logm+1 10− m

2
logm+1 k1 + (m− 1) logm+1 2f

= O(1) + k2 − o(m)− m

2
logm+1 k1 + (m− 1) logm+1 2 + (m− 1) logm+1

[√
k1

m3

]
= O(1) + k2 − o(m)− m

2
logm+1 k1 +

m− 1
2

logm+1 k1 − (m− 1) logm+1m
3

= k2 −
1
2

logm+1 k1 +O(m) > k − ln k
ln ln k

(1 + o(1)) +O

(
ln k

ln ln k

)
= k +O

(
ln k

ln ln k

)
.

Hence,

κ̂clique(k) > κ̂clique(k2) > logu v > k +O

(
ln k

ln ln k

)
.

The proof of the theorem is complete.

It is seen from the next-to-last relation in the proof that the parameter m is
chosen optimally with respect to the order of growth of the remainder. If we take
it smaller, then O(m) will decrease, but logm+1 k1 will increase and vice versa. In
this connection it seems interesting to consider upper estimates for the quantity
κ̂clique(k). At the same time, it seems unlikely that our choice of the parameters is
globally optimal. Such an optimization problem is very hard to solve even asymp-
totically. And a straightforward exhaustive search is hardly feasible here. It is
quite reasonable to expect that tables like the one in § 4.3.4 will contain better and
better results. However, compiling such tables is very laborious and we shall not
do it here.

5.2.5. On chromatic numbers. In this subsubsection we actually say nothing new
as compared to § 4.3.5. First, we have a complete analogue of Theorem 10, which
states that the estimates for the quantities κ̂clique(k) obtained above are carried
over as well to the quantities κ̂χ−exp

clique (k).
Second, one can formulate and prove a great number of theorems similar to The-

orems 11 and 12. The problem is that each of these theorems involves a lot of
parameters and we have not succeeded in choosing the values of these parameters
so as to improve the results shown in the tables presented in § 4.3.5. Nevertheless,
we give below a formulation which in a sense is parallel to the formulation of Theo-
rem 12 and which appears most promising from the viewpoint of final optimization.

Thus, suppose that numbers k, m, a0, . . . , am, x satisfy all the conditions of
Proposition 8. Take the least prime p such that (a1+4a2+9a3+ · · ·+m2am)n−p <
xn and denote

S(m,a, k, n) =
n!/((a0n)! · · · (amn)!)∑

u∈U n!/(u0! · · ·um!)
,

where

U =
{
u = (u0, . . . , um) ∈ Nm+1 : u0+ · · ·+um = n, u1+2u2+ · · ·+mum 6 p−1

}
.
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Let c(k,m) be defined by the relation

max
a

S(m,a, k, n) = (c(k,m) + o(1))n.

Here, we do not rule out the possibility of c(k,m) = 1. The following assertion
holds.

Theorem 15. The following estimate is valid:

χ̃κ
clique(k) > χ̃κ

clique(k,m) > c(k,m).

Proof. The proof is quite standard (cf. the proof of Theorem 12). The forbidden
inner product y is taken to be (a1 +4a2 +9a3 + · · ·+m2am)n−p. The numerator in
the definition of the quantity S(m,a, k, n) is |V (Hn)|, the denominator is equal to
the estimate for the independence number obtained with the use of the polynomial
technique. Here the polynomials Px ∈ Zp[y1, . . . , yn] that correspond to the vertices
x = (x1, . . . , xn) of graph Hn are as follows:

Px(y) =
∏
j∈J

(j − (x,y)), J = {1, . . . , p} \ {y mod p}, y = (y1, . . . , yn),

yl(yl − 1)(yl − 2) · · · (yl −m) = 0, l ∈ {1, . . . , n}.

The degree of any such polynomial is at most p − 1, and its degree in each of the
variables is at most m. Thus, ui is the number of variables occurring to power i in
some monomial. The proof of the theorem is complete.

5.3. Results of the section. In this case the results are quite apparent.
1. We have proved Theorem 13, which is optimal for each value of m.
2. We have proved Theorem 14, which provides a new estimate for the remain-

der in the asymptotic representation of the quantity κ̂clique(k).
3. The validity of Theorem 15 has been established, which will probably

improve the results of Theorems 11 and 12 on chromatic numbers.
4. It is still interesting to estimate the quantity κ̂clique(k) from above.
5. Optimization in Theorem 15 is the subject of further study.
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[4] H. Hadwiger, “Ein Überdeckungssatz für den Euklidischen Raum”, Portugaliae

Math. 4 (1944), 140–144.
[5] F. Harary, Graph theory, Addison-Wesly, Reading, MA 1969.
[6] A.M. Raigorodskii, “Borsuk’s problem and the chromatic numbers of some metric

spaces”, Uspekhi Mat. Nauk 56:1 (2001), 107–146; English transl. in Russian
Math. Surveys 56:1 (2001), 103–139.

http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1086.52001
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1086.52001
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1221.05001
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0060.40610
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0060.40610
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0182.57702
http://dx.doi.org/10.4213/rm358
http://dx.doi.org/10.4213/rm358
http://dx.doi.org/10.1070/RM2001v056n01ABEH000358
http://dx.doi.org/10.1070/RM2001v056n01ABEH000358


1478 A.B. Kupavskii and A.M. Raigorodskii

[7] A.M. Raigorodskii, Chromatic numbers, Moscow Center for Continuous
Mathematical Education, Moscow 2003. (Russian)

[8] A.M. Raigorodskii, Linear algebraic method in combinatorics, Moscow Center for
Continuous Mathematical Education, Moscow 2007. (Russian)

[9] A.M. Raigorodskii, “Coloring distance graphs and graphs of diameters”, Thirty
essays on geometric graph theory, Lecture Notes in Math., Springer-Verlag, New
York 2013, pp. 429–460.

[10] P.K. Agarwal and J. Pach, Combinatorial geometry, Wiley-Intersci. Ser. Discrete
Math. Optim., John Wiley and Sons Inc., New York 1995.

[11] V. Klee and S. Wagon, Old and new unsolved problems in plane geometry and
number theory, Dolciani Math. Exp., vol. 11, Math. Association of America,
Washington 1991.
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