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Two definitions

There are two well-known definitions of distance graphs. The first one is
the following:

Complete distance graphs

A finite graph G = (V,E) is a complete (unit) distance graph in Rd if
V ⊂ Rd and E = {(x, y), x, y ∈ Rd, |x− y| = 1}.

The second one is slightly different:

Distance graphs

A finite graph G = (V,E) is a (unit) distance graph in Rd if it is a
subgraph of some complete distance graph in Rd.
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Motivation. Erdős on unit distances

In 1946 Erdős raised the following problem:

Determine the maximum number f2(n) of unit distances between n
points on the plane.

In 1965 Erdős, Harary and Tutte introduced the concept of the Euclidean
dimension:

Euclidean dimension dimG of a graph G is the minimum dimension d so
that the graph G is isomorphic to some distance graph in Rd.
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Motivation. Hadwiger-Nelson problem

The following question was asked by E. Nelson in 1950:

What is the minimum number of colors needed to color the points of the
plane so that no two points at unit distance apart receive the same color?

This quantity is called the chromatic number χ(R2) of the plane.
We can define analogous quantity in Rd.
Formally,

χ(Rd) = min{m ∈ N : Rd = H1 ∪ . . . ∪Hm :

∀i,∀x, y ∈ Hi |x− y| 6= 1}.

Theorem(1951, P. Erdős, N.G. de Bruijn). If we accept the axiom of
choice then the chromatic number of Rd is equal to the chromatic
number of some finite distance graph in Rd.
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Distance and complete distance graphs. Notation

D(d) — the set of all labeled distance graphs in Rd

Dn(d) — the set of all those of order n.
CD(d) — the set of all labeled complete distance graphs in Rd

CDn(d) — the set of those of order n.

Redefinition of quantities discussed above

f2(n) = max
G∈Dn(2)

|E(G)| = max
G∈CDn(2)

|E(G)|.

χ(Rd) = max
G∈D(d)

χ(G) = max
G∈CD(d)

χ(G).

For both quantities it makes no difference whether to consider distance or
complete distance graphs.
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Main theorem

However, there is a strong difference between these two definitions. First,
it affects the sizes of sets |CDn(d)| and |Dn(d)|.

Theorem 1 (N. Alon, AK, 2013; AK, A. Raigorodskii, M. Titova, 2012)

1. For any d ∈ N, we have log2 |CDn(d)| ∼ dn log2 n.

2. For any d ∈ N, d > 4, we have log2 |Dn(d)| ∼
(

1− 1
[d/2]

)
n2

2 .
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Sketch of the proof. Upper bound from Part 1.

Let P1, . . . , Pm be m real polynomials in l real variables.

Zero pattern of the Pj ’s at x ∈ Rl is (ε1, . . . , εm) ∈ {0, 1}m, where
εj = 0, if Pj(x) = 0 and εj = 1 if Pj(x) 6= 0.

z(P1, . . . , Pm) — number of zero patterns of polynomials P1, . . . , Pm.

L. Ronyai, L. Babai, M.K. Ganapathy, 2001, Theorem 1.3 and Corollary 1.5

Let P1, . . . , Pm be m real polynomials in l real variables, and suppose the
degree of each Pj does not exceed k. Then z(P1, . . . , Pm) 6

(
km
l

)
.
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Next we interconnect zero patterns of polynomials and distance graphs.

vi = (vi1, . . . , v
i
d) — vertex vi of a complete distance graph.

Each unordered pair {i, j} of vertices → a polynomial Pij :

Pij = −1 +
d∑

r=1

(vir − vjr)2.

Each labeled complete distance graph in Rd corresponds to some zero
pattern of the polynomials P12, . . . , Pn−1n.
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Planar distance graphs with high girth

It is known that 4 6 χ(R2) 6 7.

Question (1975, P. Erdős): Is there a planar distance graph with
chromatic number 4 and without triangles?

In 2000 P. O’Donnell proved that

For any k ∈ N there exists a planar distance graph with the chromatic
number equal to four and with girth larger than k.

The girth of a graph the length of its shortest cycle.
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Higher dimensions

It is known that the chromatic number of the space grows exponentially
with the dimension:

Theorem (A. Raigorodskii, 1999; D.G. Larman, C.A. Rogers, 1971)

We have

(ζlow + o(1))n 6 χ(Rn) 6 (3 + o(1))n, where ζlow = 1.239 . . .

It seems reasonable to ask the following question:

Whether there exists a sequence of distance graphs (complete distance
graphs) in Rd, d = 1, 2, . . ., with girth greater than l for a fixed l > 3
and, additionally, the chromatic number of the graphs in the sequence
grows exponentially with d?
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It turns out that in the case of distance graphs the answer is positive:

Theorem 2 (AK, 2012). For any g ∈ N there exists a sequence of
distance graphs in Rd, d = 1, 2, . . . , with girth greater than g such that
the chromatic number of the graphs in the sequence grows as
(c+ ō(1))d, where c = c(g) > 1.

What about complete distance graphs?

Proposition 2 (N. Alon, AK, 2013) For any g ∈ N there exists a
sequence of complete distance graphs in Rd, d = 1, 2, . . . , with girth
greater than g such that the chromatic number of the graphs in the
sequence grows as Ωg

(
d

log d

)
.
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Number of edges in distance and complete
distance graphs

The maximum number of edges in a distance graph on n vertices in Rd is
a classical and well-studied quantity.

We, in turn, study the opposite problem: determine the minimum number
l(d) (L(d)) of edges a graph G must have so that it is not isomorphic to
a (complete) distance graph in Rd.

It is clear that L(d) 6 l(d) 6
(
d+2
2

)
, since a complete graph on d+ 2

vertices cannot be realized as a distance graph in Rd.
But is this graph best possible? This question for l(d) was asked by P.
Erdős and M. Simonovits in 1980.
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Erdős and M. Simonovits in 1980.

Noga Alon, Andrey B. Kupavskii Distance graphs



Number of edges in distance and complete
distance graphs

The maximum number of edges in a distance graph on n vertices in Rd is
a classical and well-studied quantity.

We, in turn, study the opposite problem: determine the minimum number
l(d) (L(d)) of edges a graph G must have so that it is not isomorphic to
a (complete) distance graph in Rd.

It is clear that L(d) 6 l(d) 6
(
d+2
2

)
, since a complete graph on d+ 2

vertices cannot be realized as a distance graph in Rd.
But is this graph best possible? This question for l(d) was asked by P.
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Theorem 3

The answer to the question of P. Erdős and M. Simonovits is positive for
d > 4:

Theorem 3 (AK, 2013+)

Let d > 4. Then l(d) =
(
d+2
2

)
.

Interestingly, this is not the case only for d = 3. Graph K3,3 is not a
distance graph in R3 and has 9 <

(
5
2

)
edges.
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Theorem 4

This problem seems to be harder for complete distance graphs.

Lk(d) — the minimum number of edges a graph G with chromatic
number k must have so that G is cannot be realized as a complete
distance graph in Rd.

Theorem 4 (N. Alon, AK, 2013)

For any d > 4 we have
(
d+2
2

)
6 L2(d) 6

(
d+3
2

)
− 6.

The graph that gives the upper bound is a bipartite graph K with the
parts A = {a1, . . . , ad}, B = {b1, . . . , bd} and with the set of edges
E = {(ai, bj) : i > j} ∪ {(ai, bj) : i 6 3}
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Open problems

1 Improve the bound on the chromatic number of sequences
of complete distance graphs that have large girth.

2 Prove that for some r there exists a sequence of complete
distance graphs that do not contain a copy of Kr,r and
whose chromatic number grows exponentially with the
dimension.

3 Prove that L2(d) =
(
d+3
2

)
− 6.

4 Is it true that L(d) =
(
d+2
2

)
?
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