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Introduction

Claim

Let G be a graph with maximum vertex degree ∆(G). Then the chromatic
number of the graph satisfies

χ(G) 6 ∆(G) + 1.

The inequality is tight since the equality holds for complete graphs.

Question: can we improve this bound for some classes of graphs (e.g., for
triangle-free graphs, V.G. Vizing, 1968)?

Theorem (A. Johanssen, 1996)

There exists a constant C > 0 such that for any triangle-free graph G we have

χ(G) 6 C
∆(G)

ln ∆(G)
.
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Definitions from hypergraph theory

Definition

A hypergraph is a pair H = (V,E), where V is a finite set (called the vertex set
of the hypergraph) and E is a family of subsets of V (called the edges of the
hypergraph).

A hypergraph is said to be n-uniform if each of its edges consists of exactly n
vertices.

The coloring f of the vertices of a hypergraph is said to be proper if, in this
coloring, all the edges of the hypergraph are not monochromatic.

A hypergraph H = (V,E) is called k-colorable if there is a proper coloring
f : V → {1, . . . , k} for H.

The chromatic number χ(H) of a hypergraph H is the minimum k such that
H is k-colorable.

Question: what is the connection between the chromatic number of an n-uniform
hypergraph and its maximum vertex degree?
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Erdős – Lovász theorem

The following theorem establishes such connection.

Theorem (P. Erdős, L. Lovász, 1973)

Let n > 3, k > 2 and let H be an n-uniform hypergraph, satisfying

∆(H) 6
1

e
kn−1n−1.

Then H is k-colorable.

This theorem was historically a first application of the celebrated Local Lemma.

Corollary

Let H be an n-uniform hypergraph, then

χ(H) 6 3(∆(H))
1

n−1 .

This theorem gives the right asymptotic order of growth on ∆(H) (but not on n).
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Improvements of the Erdős–Lovász theorem

Let H be an n-uniform hypergraph.

J. Radhakrishnan, A. Srinivasan (2000).

If ∆(H) 6 0, 17
2n√
n lnn

, then χ(H) = 2.

A.V. Kostochka, M. Kumbhat, V. Rödl (2010). If k = o(
√

ln lnn) and

∆(H) 6 e−4k2
( n

lnn

)a/(a+1) kn−1

n
, a = blog2 kc, then χ(H) 6 k.

D. Shabanov (2010). If k > 3 and

∆(H) 6
1

8

kn−1

√
n
, then χ(H) 6 k.
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√

ln lnn) and

∆(H) 6 e−4k2
( n

lnn

)a/(a+1) kn−1

n
, a = blog2 kc, then χ(H) 6 k.

D. Shabanov (2010). If k > 3 and

∆(H) 6
1

8

kn−1

√
n
, then χ(H) 6 k.

A. Kupavskii, D. Shabanov (Moscow) Colorings of hypergraphs 19 June 2012 5 / 15



Improvements of the Erdős–Lovász theorem
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Hypergraphs with large girth

Definition

A simple cycle of length k in a hypergraph H = (V,E) is an ordered set
(v0, e1, v1, . . . , ek, vk) of k distinct edges e1, . . . , ek and k distinct vertices
v0, . . . , vk−1, vk = v0, such that vi−1, vi ∈ ei for any i = 1, . . . , k.
The length of shortest simple cycle is called the girth of the hypergraph H and
denoted by g(H).

Notation: If g(H) > 2 then H is called simple.

Question: Can we improve Erdős–Lovász theorem for hypergraphs with large
girth?
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Colorings of simple hypergraphs

Next result obtained by Z. Szabó improves the Erdős–Lovász theorem for simple
hypergraphs.

Theorem (Z. Szabó, 1990)

For any ε > 0 and k > 2 there exists n0(ε, k) such that for all n > n0(ε, k) the
following statement holds: if H is an n-uniform simple hypergraph, satisfying

∆(H) 6 kn−1n−ε,

then H is k-colorable.

This theorem gives a better bound for ∆(H) than all improvements of the
Erdős–Lovász theorem.

But k should be small in comparison with n. For large k we have no improvement.
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Johanssen-type theorem for simple hypergraphs

Theorem (A. Frieze, D. Mubayi, 2008)

For any n > 3, there exists c(n) > 0 such that for any simple n-uniform
hypergraph H the following inequality holds

χ(H) 6 c(n)

(
∆(H)

ln ∆(H)

) 1
n−1

.

Corollary

For any n > 3 there exists c(n) > 0 such that any simple n-uniform hypergraph H
with

∆(H) 6 c(n) kn−1 ln k,

is k-colorable.

Conclusion: the right order of growth on k is found.
Question: what is the order of c(n)?
Answer: c(n) = O(n1−2n), i.e. theorem of Frieze and Mubayi improves the
classical Erdős–Lovász theorem only for ln k = Ω(n2n−2).
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New result

Theorem (A. Kupavskii, D. Shabanov, 2012)

Let H be an n-uniform hypergraph with g(H) > 5. If

∆(H) 6 c
kn−1

lnn
,

where c > 0 is an absolute constant, then H is k-colorable.

We have the following relation between girth, chromatic number and maximum
degree.

any g(H) ∆(H) 6 e−4k2 ( n
lnn

)a/(a+1) kn−1

n ,

a = blog2 kc, k = o(
√

ln lnn)

⇒ χ(H) 6 k,

any g(H) ∆(H) 6 c · kn−1n−1/2 ⇒ χ(H) 6 k,

g(H) > 2 ∆(H) 6 c · kn−1n−ε(n), ε(n) = Θ( 4

√
ln k
lnn ) ⇒ χ(H) 6 k,

g(H) > 5 ∆(H) 6 c · kn−1(lnn)−1 ⇒ χ(H) 6 k.
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Ideas of the proof. Random recoloring method

The proof is based on a method of random recoloring. This method was first
proposed by J. Beck and then developed by J. Spencer, J. Radhakrishnan and A.
Srinivasan, A.V. Kostochka.

Let H = (V,E) be a hypergraph with g(H) > 5 and

∆(H) 6 c
kn−1

lnn
.

We have to show that H is k-colorable. To prove this we shall construct some
random k-coloring and estimate the probability that this coloring is not proper for
H. Without loss of generality we assume that V = {1, . . . ,M}. Our construction
consists of two stages.

First stage. Initial coloring. We color all vertices from V randomly and
uniformly with k colors, independently from each other. Let us denote the
generated random coloring by ξ.
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First stage

The obtained coloring ξ can contain monochromatic edges and almost
monochromatic edges. An edge e ∈ E is said to be almost monochromatic in ξ if
there is a color a such that

n− s 6 |{v ∈ e : v is colored with a in ξ}| 6 n− 1,

where 1 6 s < n/2 is the first parameter of the construction. In this case, the
color a is called dominating in e.

For every v ∈ V , a = 1, . . . , r, let us use the notations

M(v) = {e ∈ E : v ∈ e, e is monochromatic in ξ} ,

AM(v, a) = {e ∈ E : v ∈ e, e is almost monochromatic in ξ

with dominating color a} .

During the second stage of the construction we shall try to recolor some vertices
from the monochromatic edges, but at the same time we shall forbid almost
monochromatic edges to become completely monochromatic.
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Second stage. Random recoloring process.

Second stage. Process of random recoloring. Consider the following set of
mutually independent random elements (also independent of ξ):

1. N1 = (N1(t), t ≥ 0), . . . , NM = (NM (t), t ≥ 0) — standard Poisson random
processes.

2. {η(r)v : v = 1, . . . ,M ; r ∈ N} — equally distributed random variables taking
values 1, 2, . . . , k with equal probability p (second parameter of the
construction) and the value 0 with probability 1− kp.

For each vertex v and color a ∈ {1, 2, . . . , k} we define the following random
variables:

rv(a) = min
{
r : η(r)v = a

}
,

Xv(a) = {t : Nv(t) = rv(a)} ,

i.e. Xv(a) is the time of the rv(a)-th jump of Nv.

A. Kupavskii, D. Shabanov (Moscow) Colorings of hypergraphs 19 June 2012 12 / 15



Second stage. Random recoloring process.

Process of random recoloring goes as follows. For every vertex v and any r ∈ N,
at the time Tv(r) of r-th jump of Nv we check the following three conditions:

1. There is an edge A, v ∈ A, which is monochromatic in the coloring ξ and
none of the vertices of A has changed its initial color up to time Tv(r).

2. The color η
(r)
v /∈ {0, ξv}.

3. The recoloring with color η
(r)
v is not blocked. We say that the recoloring of

the vertex v with color a is blocked, if there is an edge B, v ∈ B, such that
B was almost monochromatic with dominating color a in ξ and at the
moment Xv(a) vertex v is the only vertex in B which is not colored with a.

If all the conditions hold then we recolor v with color η
(r)
v . Otherwise, we do not

change its color.

For vertex v and the moment t > 0 we get the random variable ζv(t),
corresponding to the color of v in the process at the time t > 0.
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Further actions

What remains to do?

We have to analyze the situations in which there are monochromatic edges in
the random coloring ζ(t) = {ζ1(t), . . . , ζM (t)}. The event F(t) that ζ(t) is
not a proper coloring for the hypergraph H can be divided into some ”local”
events, which depend on the colorings of adjacent edges.

We estimate the probabilities of these local events and make the choice of
the parameters (s, p, t).

Finally, we use Local Lemma to show that all of them do not occur
simultaneously with positive probability.
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Thank You

Thank You
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