The chromatic numbers of distance graphs and applications to combinatorial problems

Andrey Kupavskiy
Department of Mechanics and Mathematics
Moscow State University
Moscow, Russia
19.06.2011-25.06.2011, Bled

Nelson-Hadwiger problem

- The following problem was posed by Nelson in 1950:

the chromatic number

what is the minimum number of colors which are needed to paint all the points on the plane so that any two points at distance 1 apart receive different colors?
this quantity is named the chromatic number $\chi\left(\mathbb{R}^{2}\right)$ of the plane.

Nelson-Hadwiger problem

- The following problem was posed by Nelson in 1950:

the chromatic number

what is the minimum number of colors which are needed to paint all the points on the plane so that any two points at distance 1 apart receive different colors?
this quantity is named the chromatic number $\chi\left(\mathbb{R}^{2}\right)$ of the plane.

- the same quantity can be considered in \mathbb{R}^{d}.

Nelson-Hadwiger problem

- The following problem was posed by Nelson in 1950:

the chromatic number

what is the minimum number of colors which are needed to paint all the points on the plane so that any two points at distance 1 apart receive different colors?
this quantity is named the chromatic number $\chi\left(\mathbb{R}^{2}\right)$ of the plane.

- the same quantity can be considered in \mathbb{R}^{d}.
- Formally,

$$
\begin{aligned}
& \chi\left(\mathbb{R}^{d}\right)=\min \left\{m \in \mathbb{N}: \mathbb{R}^{d}=H_{1} \cup \ldots \cup H_{m}:\right. \\
&\left.\forall i, \forall x, y \in H_{i} \quad|x-y| \neq 1\right\}
\end{aligned}
$$

Distance graph

definition

The distance graph $G=(V, E)$ in \mathbb{R}^{d} is a graph with $V \subset \mathbb{R}^{d}$ and $E=\left\{(x, y), x, y \in \mathbb{R}^{d},|x-y|=1\right\}$.

Distance graph

definition

The distance graph $G=(V, E)$ in \mathbb{R}^{d} is a graph with $V \subset \mathbb{R}^{d}$ and $E=\left\{(x, y), x, y \in \mathbb{R}^{d},|x-y|=1\right\}$.

If $G=(V, E)$ is a distance graph in \mathbb{R}^{d}, then obviously $\chi(G) \leq \chi\left(\mathbb{R}^{d}\right)$.

Distance graph

definition

The distance graph $G=(V, E)$ in \mathbb{R}^{d} is a graph with $V \subset \mathbb{R}^{d}$ and $E=\left\{(x, y), x, y \in \mathbb{R}^{d},|x-y|=1\right\}$.

If $G=(V, E)$ is a distance graph in \mathbb{R}^{d}, then obviously $\chi(G) \leq \chi\left(\mathbb{R}^{d}\right)$.

Theorem, 1951, Erdős, de Bruijn

If we accept the axiom of choice, then the chromatic number of the space is equal to the chromatic number of some finite distance graph in that space.

Asymptotical lower bounds

- 1971, Raiskii, $\chi\left(\mathbb{R}^{d}\right) \geq d+2$

Asymptotical lower bounds

- 1971, Raiskii, $\chi\left(\mathbb{R}^{d}\right) \geq d+2$
- 1972, Larman, Rogers, $\chi\left(\mathbb{R}^{d}\right) \geq c_{1} d^{2}$

Asymptotical lower bounds

- 1971, Raiskii, $\chi\left(\mathbb{R}^{d}\right) \geq d+2$
- 1972, Larman, Rogers, $\chi\left(\mathbb{R}^{d}\right) \geq c_{1} d^{2}$
- 1978, Larman, $\chi\left(\mathbb{R}^{d}\right) \geq c_{2} d^{3}$

Asymptotical lower bounds

- 1971, Raiskii, $\chi\left(\mathbb{R}^{d}\right) \geq d+2$
- 1972, Larman, Rogers, $\chi\left(\mathbb{R}^{d}\right) \geq c_{1} d^{2}$
- 1978, Larman, $\chi\left(\mathbb{R}^{d}\right) \geq c_{2} d^{3}$
- 1980, Frankl, $\forall t \exists d(t): \forall d>d(t) \chi\left(\mathbb{R}^{d}\right) \geq d^{t}$

Asymptotical lower bounds

- 1971, Raiskii, $\chi\left(\mathbb{R}^{d}\right) \geq d+2$
- 1972, Larman, Rogers, $\chi\left(\mathbb{R}^{d}\right) \geq c_{1} d^{2}$
- 1978, Larman, $\chi\left(\mathbb{R}^{d}\right) \geq c_{2} d^{3}$
- 1980, Frankl, $\forall t \exists d(t): \forall d>d(t) \chi\left(\mathbb{R}^{d}\right) \geq d^{t}$
- 1981, Frankl, Wilson $\chi\left(\mathbb{R}^{d}\right) \geq(1,207 . .+o(1))^{d}$

Asymptotical lower bounds

- 1971, Raiskii, $\chi\left(\mathbb{R}^{d}\right) \geq d+2$
- 1972, Larman, Rogers, $\chi\left(\mathbb{R}^{d}\right) \geq c_{1} d^{2}$
- 1978, Larman, $\chi\left(\mathbb{R}^{d}\right) \geq c_{2} d^{3}$
- 1980, Frankl, $\forall t \exists d(t): \forall d>d(t) \chi\left(\mathbb{R}^{d}\right) \geq d^{t}$
- 1981, Frankl, Wilson $\chi\left(\mathbb{R}^{d}\right) \geq(1,207 . .+o(1))^{d}$
- 2000, Raigorodskii, $\chi\left(\mathbb{R}^{d}\right) \geq(1,239 . .+o(1))^{d}$

Graphs with big chromatic number without cliques and cycles

The length of the shortest cycle in graph G is called the $\operatorname{girth}(G)$.

Graphs with big chromatic number without cliques and cycles

The length of the shortest cycle in graph G is called the $\operatorname{girth}(G)$.

Theorem, 1959, Erdős

For every k, l there exists a graph G with $\chi(G)>k$ and with $\operatorname{girth}(G)>l$.

This was the probabilistic approach. There are also some explicit constructions.

Graphs with big chromatic number without cliques and cycles

The length of the shortest cycle in graph G is called the $\operatorname{girth}(G)$.

Theorem, 1959, Erdős

For every k, l there exists a graph G with $\chi(G)>k$ and with $\operatorname{girth}(G)>l$.

This was the probabilistic approach. There are also some explicit constructions.
What can we obtain for distance graphs?

Distance graphs without cliques and cycles

We know, that $\chi\left(\mathbb{R}^{d}\right) \geq(1,239 . .+o(1))^{d}$, or, that there is a finite distance graph G in \mathbb{R}^{d} with $\chi(G) \geq(1,239 . .+o(1))^{d}$.

Distance graphs without cliques and cycles

We know, that $\chi\left(\mathbb{R}^{d}\right) \geq(1,239 . .+o(1))^{d}$, or, that there is a finite distance graph G in \mathbb{R}^{d} with $\chi(G) \geq(1,239 . .+o(1))^{d}$.

So, we want to obtain the results of the form:
G is a finite distance graph in \mathbb{R}^{d}, G does not contain clique of size $k \geq 3$ (cycle of length $l \geq 3$), and $\chi(G) \geq(c+\bar{o}(1))^{d}, c>1$.

Distance graphs without cliques and cycles

We know, that $\chi\left(\mathbb{R}^{d}\right) \geq(1,239 . .+o(1))^{d}$, or, that there is a finite distance graph G in \mathbb{R}^{d} with $\chi(G) \geq(1,239 . .+o(1))^{d}$.

So, we want to obtain the results of the form:

G is a finite distance graph in \mathbb{R}^{d}, G does not contain clique of size $k \geq 3$ (cycle of length $l \geq 3$), and $\chi(G) \geq(c+\bar{o}(1))^{d}, c>1$.

Theorem, Raigorodskif, Rubanov

For all k there is a distance graph G in \mathbb{R}^{d}, G does not contain cliques of size $k, \chi(G) \geq(c+\bar{o}(1))^{d}, c>1$. Moreover, $c \rightarrow 1,239$.. as $k \rightarrow \infty$.

This is a probabilistic approach.

Distance graphs without cliques and cycles

We know, that $\chi\left(\mathbb{R}^{d}\right) \geq(1,239 . .+o(1))^{d}$, or, that there is a finite distance graph G in \mathbb{R}^{d} with $\chi(G) \geq(1,239 . .+o(1))^{d}$.

So, we want to obtain the results of the form:

G is a finite distance graph in \mathbb{R}^{d}, G does not contain clique of size $k \geq 3$ (cycle of length $l \geq 3$), and $\chi(G) \geq(c+\bar{o}(1))^{d}, c>1$.

Theorem, Raigorodskif, Rubanov

For all k there is a distance graph G in \mathbb{R}^{d}, G does not contain cliques of size $k, \chi(G) \geq(c+\bar{o}(1))^{d}, c>1$. Moreover, $c \rightarrow 1,239$.. as $k \rightarrow \infty$.

This is a probabilistic approach. There is also an explicit construction (due to Raigorodskii and Demechin), but in that case $c \nrightarrow 1,239 .$. , although, for small cliques this method gives better bounds.

Distance graphs without cliques and cycles

We know, that $\chi\left(\mathbb{R}^{d}\right) \geq(1,239 . .+o(1))^{d}$, or, that there is a finite distance graph G in \mathbb{R}^{d} with $\chi(G) \geq(1,239 . .+o(1))^{d}$.

So, we want to obtain the results of the form:

G is a finite distance graph in \mathbb{R}^{d}, G does not contain clique of size $k \geq 3$ (cycle of length $l \geq 3$), and $\chi(G) \geq(c+\bar{o}(1))^{d}, c>1$.

Theorem, Raigorodskii, Rubanov

For all k there is a distance graph G in \mathbb{R}^{d}, G does not contain cliques of size $k, \chi(G) \geq(c+\bar{o}(1))^{d}, c>1$. Moreover, $c \rightarrow 1,239$.. as $k \rightarrow \infty$.

This is a probabilistic approach. There is also an explicit construction (due to Raigorodskii and Demechin), but in that case $c \nrightarrow 1,239 .$. , although, for small cliques this method gives better bounds.

We can also obtain an explicit construction of the graph G with $\chi(G) \geq(c+\bar{o}(1))^{d}, c>1$ and without odd cycles of length $\leq l$. Unfortunately, we can't say anything about even cycles.

New results

Denote by $\chi_{k}\left(\mathbb{R}^{d}\right)$ the maximum of the chromatic number among all distance graphs in \mathbb{R}^{d} that do not contain cliques of size k.

New results

Denote by $\chi_{k}\left(\mathbb{R}^{d}\right)$ the maximum of the chromatic number among all distance graphs in \mathbb{R}^{d} that do not contain cliques of size k.

n	$c, \chi_{k}\left(\mathbb{R}^{d}\right) \geq(c+\bar{o}(1))^{d}$ - previous bound	new bound using $(0,1)$-vectors	new bound using $(-1,0,1)$-vectors
3	1.0582	1.0582	-
4	1.0582	$\mathbf{1 . 0 6 6 3}$	1.0374
5	1.0582	$\mathbf{1 . 0 8 5 7}$	1.0601
6	1.0743	$\mathbf{1 . 0 8 9 8}$	1.0754
7	1.0857	$\mathbf{1 . 0 9 9 5}$	1.0865
8	1.0933	$\mathbf{1 . 1 0 1 9}$	1.0948
9	1.0992	$\mathbf{1 . 1 0 7 7}$	1.1013
10	1.1033	$\mathbf{1 . 1 0 9 3}$	1.1066
11	1.1075	$\mathbf{1 . 1 1 3 1}$	1.1109
12	1.1096	1.1142	$\mathbf{1 . 1 1 4 5}$
13	1.1124	1.1170	$\mathbf{1 . 1 1 7 5}$
14	1.1151	1.1178	$\mathbf{1 . 1 2 0 1}$
15	1.1220	1.1198	$\mathbf{1 . 1 2 2 4}$
$\lim _{k \rightarrow \infty}$	$\mathbf{1 . 2 3 9}$	1.139	1.154

(0,1)-graphs, $(-1,0,1)$-graphs.

In fact, all the bounds discussed above are obtained on the graphs of the following type.

$$
\begin{aligned}
& G=G\left(d, m,\left\{a_{0}, a_{1}, \ldots, a_{m}\right\}, x\right)=(V, E) . \text { The set of vertices is: } \\
& V=\left\{x=\left(x_{1}, \ldots, x_{d}\right), x_{i} \in\{0,1, \ldots, m\},\right. \\
& \left.\quad\left|\left\{i: x_{i}=j\right\}\right|=a_{j} d, \forall j=0, \ldots, m, a_{i} \in(0,1), \sum_{i=0}^{m} a_{i}=1\right\} .
\end{aligned}
$$

The set of edges is: $E=\left\{\left\{y_{1}, y_{2}\right\} \mid y_{1}, y_{2} \in V,\left(y_{1}, y_{2}\right)=x d\right\}$.

(0,1)-graphs, $(-1,0,1)$-graphs.

In fact, all the bounds discussed above are obtained on the graphs of the following type.
$G=G\left(d, m,\left\{a_{0}, a_{1}, \ldots, a_{m}\right\}, x\right)=(V, E)$. The set of vertices is:

$$
\begin{aligned}
& V=\left\{x=\left(x_{1}, \ldots, x_{d}\right), x_{i} \in\{0,1, \ldots, m\},\right. \\
& \left.\qquad\left|\left\{i: x_{i}=j\right\}\right|=a_{j} d, \forall j=0, \ldots, m, a_{i} \in(0,1), \sum_{i=0}^{m} a_{i}=1\right\} .
\end{aligned}
$$

The set of edges is: $E=\left\{\left\{y_{1}, y_{2}\right\} \mid y_{1}, y_{2} \in V,\left(y_{1}, y_{2}\right)=x d\right\}$.
We are mostly interested in cases $m=1$ and $m=2$, i.e. in so-called $(0,1)$-graphs and ($-1,0,1$)-graphs.

threshold for containing a k-clique

We want to know for a given set of parameters a_{i}, x whether the graph $G=G\left(d, m,\left\{a_{0}, a_{1}, \ldots, a_{m}\right\}, x\right)$ contains cliques of size k or not.

threshold for containing a k-clique

We want to know for a given set of parameters a_{i}, x whether the graph $G=G\left(d, m,\left\{a_{0}, a_{1}, \ldots, a_{m}\right\}, x\right)$ contains cliques of size k or not. In general, we obtained the following theorem:

Theorem

Consider the graph $G=G\left(d, m,\left\{a_{0}, a_{1}, \ldots, a_{m}\right\}, x\right)$ in the sequence of dimensions d_{1}, d_{2}, \ldots, such that $d_{i} a_{j}, d_{i} x \in \mathbb{N} \forall i, j$. Then if

$$
x<\frac{\left(k \sum_{i=0}^{m} i a_{i}\right)^{2}-\left\{k \sum_{i=0}^{m} i a_{i}\right\}^{2}+\left\{k \sum_{i=0}^{m} i a_{i}\right\}-k \sum_{j=0}^{m} j^{2} a_{j}}{k(k-1)},
$$

then G does not contain cliques of size k.

threshold for containing a k-clique

We want to know for a given set of parameters a_{i}, x whether the graph $G=G\left(d, m,\left\{a_{0}, a_{1}, \ldots, a_{m}\right\}, x\right)$ contains cliques of size k or not. In general, we obtained the following theorem:

Theorem

Consider the graph $G=G\left(d, m,\left\{a_{0}, a_{1}, \ldots, a_{m}\right\}, x\right)$ in the sequence of dimensions d_{1}, d_{2}, \ldots, such that $d_{i} a_{j}, d_{i} x \in \mathbb{N} \forall i, j$. Then if

$$
x<\frac{\left(k \sum_{i=0}^{m} i a_{i}\right)^{2}-\left\{k \sum_{i=0}^{m} i a_{i}\right\}^{2}+\left\{k \sum_{i=0}^{m} i a_{i}\right\}-k \sum_{j=0}^{m} j^{2} a_{j}}{k(k-1)},
$$

then G does not contain cliques of size k.
In fact, this bound is in some sense sharp.

threshold for containing a k-clique. $(0,1)$ case

Theorem

Let $m=1, a_{1}=a, x>0, a, x \in \mathbb{Q}$, and consider the sequence of dimensions d_{1}, d_{2}, \ldots, which satisfies the condition $a d_{i}, x d_{i} \in \mathbb{N}$. Consider distance graphs $G_{i}=G\left(d_{i}, 1,\{1-a, a\}, x\right)$. Let k be a natural number, $k \geq 3$. If

$$
x<\frac{(k a)^{2}-\{k a\}^{2}-[k a]}{k(k-1)}=f_{1}
$$

then G_{i} do not contain complete subgraphs (cliques) on k vertices.

threshold for containing a k-clique. $(0,1)$ case

Theorem

Let $m=1, a_{1}=a, x>0, a, x \in \mathbb{Q}$, and consider the sequence of dimensions d_{1}, d_{2}, \ldots, which satisfies the condition $a d_{i}, x d_{i} \in \mathbb{N}$. Consider distance graphs $G_{i}=G\left(d_{i}, 1,\{1-a, a\}, x\right)$. Let k be a natural number, $k \geq 3$. If

$$
x<\frac{(k a)^{2}-\{k a\}^{2}-[k a]}{k(k-1)}=f_{1},
$$

then G_{i} do not contain complete subgraphs (cliques) on k vertices. Moreover, this bound is in some sense sharp. Namely, there exists a constant $c=c(k, a)$, such that in the sequence of dimensions $c d_{1}, c d_{2}, \ldots$ graphs $\tilde{G}_{i}=G\left(c d_{i}, 1,\{1-a, a\}, f_{1}\right)$ contain complete subgraphs on k vertices.

threshold for containing a k-clique. $(-1,0,1)$ case

Theorem

Consider the graph $G=G(a, b, x)=(V, E)$ with the set of vertices:

$$
\begin{aligned}
& V=\left\{x=\left(x_{1}, \ldots, x_{d}\right), x_{i} \in\{-1,0,1\}\right. \\
& \left.\quad\left|\left\{i: x_{i}=-1\right\}\right|=b d,\left|\left\{i: x_{i}=1\right\}\right|=a d, a, b \in(0,1), a+b \leq 1\right\}
\end{aligned}
$$

and with the set of edges: $E=\left\{\left\{y_{1}, y_{2}\right\} \mid y_{1}, y_{2} \in V,\left(y_{1}, y_{2}\right)=-x d\right\}$. If

$$
x>\frac{k \cdot(a+b)-(k(a-b))^{2}-\{k(a-b)\}+\{k(a-b)\}^{2}}{k(k-1)}=f_{1}
$$

G does not contain k-cliques.
Moreover, G does not contain k-cliques if $\{k a\}+k(1-a-b)<1$ and
$x>\frac{\left(k-k^{2}\right)(2 a+2 b-1)+(4 k-4)\{k a\}+4\{k a\}^{2}+4 k(a+b)[k a]-4(k a)^{2}}{k(k-1)}$.

threshold for containing a k-clique. $(-1,0,1)$ case

Theorem

Consider the graph $G=G(a, b, x)=(V, E)$ with the set of vertices:

$$
\begin{aligned}
& V=\left\{x=\left(x_{1}, \ldots, x_{d}\right), x_{i} \in\{-1,0,1\}\right. \\
& \left.\quad\left|\left\{i: x_{i}=-1\right\}\right|=b d,\left|\left\{i: x_{i}=1\right\}\right|=a d, a, b \in(0,1), a+b \leq 1\right\}
\end{aligned}
$$

and with the set of edges: $E=\left\{\left\{y_{1}, y_{2}\right\} \mid y_{1}, y_{2} \in V,\left(y_{1}, y_{2}\right)=-x d\right\}$. If

$$
x>\frac{k \cdot(a+b)-(k(a-b))^{2}-\{k(a-b)\}+\{k(a-b)\}^{2}}{k(k-1)}=f_{1}
$$

G does not contain k-cliques.
Moreover, G does not contain k-cliques if $\{k a\}+k(1-a-b)<1$ and
$x>\frac{\left(k-k^{2}\right)(2 a+2 b-1)+(4 k-4)\{k a\}+4\{k a\}^{2}+4 k(a+b)[k a]-4(k a)^{2}}{k(k-1)}$.
These bounds are sharp

Linear-algebraic method

How to obtain exponential lower bounds on the chromatic number of these graphs?

Linear-algebraic method

How to obtain exponential lower bounds on the chromatic number of these graphs?
We will consider the $(0,1)$-case. Let $G=G(d, 1,\{1-a, a\}, x)$, where $x \leq a / 2$, and let $p=d \cdot(a-x)$ be a prime number.

Linear-algebraic method

How to obtain exponential lower bounds on the chromatic number of these graphs?
We will consider the $(0,1)$-case. Let $G=G(d, 1,\{1-a, a\}, x)$, where $x \leq a / 2$, and let $p=d \cdot(a-x)$ be a prime number.

Lemma.

If $Q \subset V$ is such that $|Q|>\sum_{i=0}^{p-1}\binom{d}{i}$, then there exist $\mathbf{z}, \mathbf{y} \in Q$ with $(\mathbf{z}, \mathbf{y})=x d$.

Linear-algebraic method

How to obtain exponential lower bounds on the chromatic number of these graphs?
We will consider the $(0,1)$-case. Let $G=G(d, 1,\{1-a, a\}, x)$, where $x \leq a / 2$, and let $p=d \cdot(a-x)$ be a prime number.

Lemma.

If $Q \subset V$ is such that $|Q|>\sum_{i=0}^{p-1}\binom{d}{i}$, then there exist $\mathbf{z}, \mathbf{y} \in Q$ with $(\mathbf{z}, \mathbf{y})=x d$.

In other words, $\alpha(G) \leq \sum_{i=0}^{p-1}\binom{d}{i}$, and the chromatic number

$$
\chi(G) \geq|V| / \alpha(G) \geq \frac{\binom{d}{a d}}{\sum_{i=0}^{p-1}\binom{d}{i}} .
$$

Borsuk partition problem

The following problem was posed by K. Borsuk in 1933:

Is it true that any set $\Omega \subset \mathbb{R}^{d}$ having diameter 1 can be divided into some parts $\Omega_{1}, \ldots, \Omega_{d+1}$ whose diameters are strictly smaller than 1 ?

Borsuk partition problem

The following problem was posed by K. Borsuk in 1933:

Is it true that any set $\Omega \subset \mathbb{R}^{d}$ having diameter 1 can be divided into some parts $\Omega_{1}, \ldots, \Omega_{d+1}$ whose diameters are strictly smaller than 1 ?

$$
\operatorname{diam} \Omega=\sup _{\mathbf{x}, \mathbf{y} \in \Omega}|\mathbf{x}-\mathbf{y}|
$$

Borsuk partition problem

The following problem was posed by K. Borsuk in 1933:

Is it true that any set $\Omega \subset \mathbb{R}^{d}$ having diameter 1 can be divided into some parts $\Omega_{1}, \ldots, \Omega_{d+1}$ whose diameters are strictly smaller than 1 ?

$$
\operatorname{diam} \Omega=\sup _{\mathbf{x}, \mathbf{y} \in \Omega}|\mathbf{x}-\mathbf{y}|
$$

- By $f(\Omega)$ we denote the value

$$
f(\Omega)=\min \left\{f: \Omega=\Omega_{1} \cup \ldots \cup \Omega_{f}, \quad \forall i \quad \operatorname{diam} \Omega_{i}<\operatorname{diam} \Omega\right\}
$$

$$
f(d)=\max _{\Omega \subset \mathbb{R}^{d}, \operatorname{diam} \Omega=1} f(\Omega)
$$

Borsuk partition problem

The following problem was posed by K. Borsuk in 1933:

Is it true that any set $\Omega \subset \mathbb{R}^{d}$ having diameter 1 can be divided into some parts $\Omega_{1}, \ldots, \Omega_{d+1}$ whose diameters are strictly smaller than 1 ?

$$
\operatorname{diam} \Omega=\sup _{\mathbf{x}, \mathbf{y} \in \Omega}|\mathbf{x}-\mathbf{y}|
$$

- By $f(\Omega)$ we denote the value

$$
f(\Omega)=\min \left\{f: \Omega=\Omega_{1} \cup \ldots \cup \Omega_{f}, \quad \forall i \quad \operatorname{diam} \Omega_{i}<\operatorname{diam} \Omega\right\} .
$$

$$
f(d)=\max _{\Omega \subset \mathbb{R}^{d}, \operatorname{diam} \Omega=1} f(\Omega) .
$$

- Borsuk's problem: is it true that always $f(d)=d+1$?

History and some known results

(1) 1946, H. Hadwiger, if Ω has smooth boundary, then $f(\Omega) \leq d+1$
(1) 1946, H. Hadwiger, if Ω has smooth boundary, then $f(\Omega) \leq d+1$

1993, J. Kahn and G. Kalai disproved the conjecture. They constructed a finite set of points in a very high dimension d that could not be decomposed into $d+1$ subsets of smaller diameter
(1) 1946, H. Hadwiger, if Ω has smooth boundary, then $f(\Omega) \leq d+1$

1993, J. Kahn and G. Kalai disproved the conjecture. They constructed a finite set of points in a very high dimension d that could not be decomposed into $d+1$ subsets of smaller diameter
(2) Borsuk's conjecture is shown to be true for $d \leq 3$ and false for

$$
d \geq 298
$$

History and some known results

(1) 1946, H. Hadwiger, if Ω has smooth boundary, then $f(\Omega) \leq d+1$

1993, J. Kahn and G. Kalai disproved the conjecture. They constructed a finite set of points in a very high dimension d that could not be decomposed into $d+1$ subsets of smaller diameter
(2) Borsuk's conjecture is shown to be true for $d \leq 3$ and false for $d \geq 298$
(3) $(1.2255 \ldots+o(1))^{\sqrt{d}} \leq f(d) \leq(1.224 \ldots+o(1))^{d}$.

Connection with distance graphs

All known counterexamples are finite sets of points.

Connection with distance graphs

All known counterexamples are finite sets of points.

Definition. Graph of diameters

To a finite set of points Ω with a unit diameter we assign the following graph $G_{\Omega}=(V, E): V$ consists of all the points of Ω. E consists of all pairs of points $x, y \in \Omega,\|x-y\|=1$.

Connection with distance graphs

All known counterexamples are finite sets of points.

Definition. Graph of diameters

To a finite set of points Ω with a unit diameter we assign the following graph $G_{\Omega}=(V, E): V$ consists of all the points of Ω. E consists of all pairs of points $x, y \in \Omega,\|x-y\|=1$.

$$
f(\Omega)=\chi\left(G_{\Omega}\right)
$$

Connection with distance graphs

All known counterexamples are finite sets of points.

Definition. Graph of diameters

To a finite set of points Ω with a unit diameter we assign the following graph $G_{\Omega}=(V, E): V$ consists of all the points of Ω. E consists of all pairs of points $x, y \in \Omega,\|x-y\|=1$.

$$
f(\Omega)=\chi\left(G_{\Omega}\right) .
$$

To obtain a counterexample to Borsuk conjecture we need to construct a graph of diameters with big chromatic number, namely, bigger than dimension plus one.

Graphs of diameters with certain properties

What if we consider graphs of diameters with certain properties? For example, we want to find a distance graph without cliques of given size and with big chromatic number.

Graphs of diameters with certain properties

What if we consider graphs of diameters with certain properties? For example, we want to find a distance graph without cliques of given size and with big chromatic number.

Theorem

For any $r>\frac{1}{2}$, there exists a $d_{0}=d_{0}(r)$ such that for every $d \geq d_{0}$, one can find a set $\Omega \subset S_{r}^{d-1}$ which has diameter 1 and does not admit a partition into $d+1$ parts of smaller diameter.

Graphs of diameters with certain properties

What if we consider graphs of diameters with certain properties? For example, we want to find a distance graph without cliques of given size and with big chromatic number.

Theorem

For any $r>\frac{1}{2}$, there exists a $d_{0}=d_{0}(r)$ such that for every $d \geq d_{0}$, one can find a set $\Omega \subset S_{r}^{d-1}$ which has diameter 1 and does not admit a partition into $d+1$ parts of smaller diameter.

In other words, for every $r>1 / 2$ there exists $\Omega \subset \mathbb{R}^{d}$, such that $\chi\left(G_{\Omega}\right)>d+1$, and G_{Ω} lies on the sphere of radius r.

Graphs of diameters with certain properties

What if we consider graphs of diameters with certain properties? For example, we want to find a distance graph without cliques of given size and with big chromatic number.

Theorem

For any $r>\frac{1}{2}$, there exists a $d_{0}=d_{0}(r)$ such that for every $d \geq d_{0}$, one can find a set $\Omega \subset S_{r}^{d-1}$ which has diameter 1 and does not admit a partition into $d+1$ parts of smaller diameter.

In other words, for every $r>1 / 2$ there exists $\Omega \subset \mathbb{R}^{d}$, such that $\chi\left(G_{\Omega}\right)>d+1$, and G_{Ω} lies on the sphere of radius r.

The last condition on G is very strong, because if r is small enough, then graph G surely does not contain cliques and odd cycles of given size.

The construction. (0,1)-graph again

The construction of such graphs is similar to the one for distance graphs.

The construction. (0,1)-graph again

The construction of such graphs is similar to the one for distance graphs. The initial set of vertices is
$V=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): \forall i x_{i} \in\{-1,1\}, x_{1}=1, x_{1}+\ldots+x_{n}=0\right\}$.
Edges again correspond to some scalar product.

The construction. (0,1)-graph again

The construction of such graphs is similar to the one for distance graphs. The initial set of vertices is
$V=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): \forall i x_{i} \in\{-1,1\}, x_{1}=1, x_{1}+\ldots+x_{n}=0\right\}$.
Edges again correspond to some scalar product. The main question is how to make a graph of diameters out of a distance graph.

dual mappings of the type

$$
\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \rightarrow \mathbf{y}^{* 2}=\left(y_{1}^{2}, y_{1} y_{2}, \ldots, y_{n} y_{n-1}, y_{n}^{2}\right) .
$$

The end

Thank You

