The chromatic numbers of distance graphs and applications to combinatorial problems

Andrey Kupavskiy

Department of Mechanics and Mathematics Moscow State University Moscow, Russia

19.06.2011 - 25.06.2011, Bled

- ∢ ≣ ▶

• The following problem was posed by Nelson in 1950:

the chromatic number

what is the minimum number of colors which are needed to paint all the points on the plane so that any two points at distance 1 apart receive different colors?

this quantity is named the *chromatic number* $\chi(\mathbb{R}^2)$ of the plane.

글 🖌 🖌 글 🕨

• The following problem was posed by Nelson in 1950:

the chromatic number

what is the minimum number of colors which are needed to paint all the points on the plane so that any two points at distance 1 apart receive different colors?

this quantity is named the *chromatic number* $\chi(\mathbb{R}^2)$ of the plane.

• the same quantity can be considered in \mathbb{R}^d .

• The following problem was posed by Nelson in 1950:

the chromatic number

what is the minimum number of colors which are needed to paint all the points on the plane so that any two points at distance 1 apart receive different colors?

this quantity is named the *chromatic number* $\chi(\mathbb{R}^2)$ of the plane.

- the same quantity can be considered in \mathbb{R}^d .
- Formally,

$$\chi(\mathbb{R}^d) = \min\{m \in \mathbb{N} : \mathbb{R}^d = H_1 \cup \ldots \cup H_m : \\ \forall i, \forall x, y \in H_i \ |x - y| \neq 1\}.$$

글 🖌 🖌 글 🕨

definition

The distance graph G = (V, E) in \mathbb{R}^d is a graph with $V \subset \mathbb{R}^d$ and $E = \{(x, y), x, y \in \mathbb{R}^d, |x - y| = 1\}.$

< 注 > < 注 > □ 注

definition

The distance graph G = (V, E) in \mathbb{R}^d is a graph with $V \subset \mathbb{R}^d$ and $E = \{(x, y), x, y \in \mathbb{R}^d, |x - y| = 1\}.$

If G = (V, E) is a distance graph in \mathbb{R}^d , then obviously $\chi(G) \leq \chi(\mathbb{R}^d)$.

definition

The distance graph G = (V, E) in \mathbb{R}^d is a graph with $V \subset \mathbb{R}^d$ and $E = \{(x, y), x, y \in \mathbb{R}^d, |x - y| = 1\}.$

If G = (V, E) is a distance graph in \mathbb{R}^d , then obviously $\chi(G) \leq \chi(\mathbb{R}^d)$.

Theorem, 1951, Erdős, de Bruijn

If we accept the axiom of choice, then the chromatic number of the space is equal to the chromatic number of some **finite** distance graph in that space.

• 1971, Raiskii, $\chi(\mathbb{R}^d) \geq d+2$

< 注→ < 注→ …

э

- 1971, Raiskii, $\chi(\mathbb{R}^d) \ge d+2$
- 1972, Larman, Rogers, $\chi(\mathbb{R}^d) \geq c_1 d^2$

글 문 문 글 문 문

- 1971, Raiskii, $\chi(\mathbb{R}^d) \geq d+2$
- 1972, Larman, Rogers, $\chi(\mathbb{R}^d) \geq c_1 d^2$
- 1978, Larman, $\chi(\mathbb{R}^d) \geq c_2 d^3$

프 (프) -

- 1971, Raiskii, $\chi(\mathbb{R}^d) \geq d+2$
- 1972, Larman, Rogers, $\chi(\mathbb{R}^d) \geq c_1 d^2$
- 1978, Larman, $\chi(\mathbb{R}^d) \geq c_2 d^3$
- 1980, Frankl, $\forall t \; \exists d(t): \; \forall d > d(t) \; \; \chi(\mathbb{R}^d) \geq d^t$

- 1971, Raiskii, $\chi(\mathbb{R}^d) \ge d+2$
- 1972, Larman, Rogers, $\chi(\mathbb{R}^d) \geq c_1 d^2$
- 1978, Larman, $\chi(\mathbb{R}^d) \geq c_2 d^3$
- 1980, Frankl, $\forall t \; \exists d(t): \; \forall d > d(t) \; \chi(\mathbb{R}^d) \geq d^t$
- 1981, Frankl, Wilson $\chi(\mathbb{R}^d) \geq (1, 207..+o(1))^d$

きょうきょう

- 1971, Raiskii, $\chi(\mathbb{R}^d) \geq d+2$
- 1972, Larman, Rogers, $\chi(\mathbb{R}^d) \geq c_1 d^2$
- 1978, Larman, $\chi(\mathbb{R}^d) \geq c_2 d^3$
- 1980, Frankl, $\forall t \; \exists d(t): \; \forall d > d(t) \; \; \chi(\mathbb{R}^d) \geq d^t$
- 1981, Frankl, Wilson $\chi(\mathbb{R}^d) \geq (1, 207..+o(1))^d$
- 2000, Raigorodskii, $\chi(\mathbb{R}^d) \geq (1,239..+o(1))^d$

きょうきょう

Graphs with big chromatic number without cliques and cycles

The length of the shortest cycle in graph G is called the girth(G).

글 문 문 글 문 문

Graphs with big chromatic number without cliques and cycles

The length of the shortest cycle in graph G is called the girth(G).

Theorem, 1959, Erdős

For every k,l there exists a graph G with $\chi(G)>k$ and with girth(G)>l.

This was the probabilistic approach. There are also some explicit constructions.

Graphs with big chromatic number without cliques and cycles

The length of the shortest cycle in graph G is called the girth(G).

Theorem, 1959, Erdős

```
For every k,l there exists a graph G with \chi(G)>k and with girth(G)>l.
```

This was the probabilistic approach. There are also some explicit constructions.

What can we obtain for distance graphs?

글 > : < 글 > : :

We know, that $\chi(\mathbb{R}^d) \ge (1, 239.. + o(1))^d$, or, that there is a finite distance graph G in \mathbb{R}^d with $\chi(G) \ge (1, 239.. + o(1))^d$.

We know, that $\chi(\mathbb{R}^d) \ge (1, 239.. + o(1))^d$, or, that there is a finite distance graph G in \mathbb{R}^d with $\chi(G) \ge (1, 239.. + o(1))^d$.

So, we want to obtain the results of the form:

G is a finite distance graph in \mathbb{R}^d , G does not contain clique of size $k \geq 3$ (cycle of length $l \geq 3$), and $\chi(G) \geq (c + \bar{o}(1))^d$, c > 1.

We know, that $\chi(\mathbb{R}^d) \ge (1, 239..+o(1))^d$, or, that there is a finite distance graph G in \mathbb{R}^d with $\chi(G) \ge (1, 239..+o(1))^d$.

So, we want to obtain the results of the form:

G is a finite distance graph in \mathbb{R}^d , G does not contain clique of size $k \geq 3$ (cycle of length $l \geq 3$), and $\chi(G) \geq (c + \bar{o}(1))^d$, c > 1.

Theorem, Raigorodskii, Rubanov

For all k there is a distance graph G in \mathbb{R}^d , G does not contain cliques of size k, $\chi(G) \ge (c + \bar{o}(1))^d$, c > 1. Moreover, $c \to 1, 239$.. as $k \to \infty$.

This is a probabilistic approach.

We know, that $\chi(\mathbb{R}^d) \ge (1, 239..+o(1))^d$, or, that there is a finite distance graph G in \mathbb{R}^d with $\chi(G) \ge (1, 239..+o(1))^d$.

So, we want to obtain the results of the form:

G is a finite distance graph in \mathbb{R}^d , G does not contain clique of size $k \geq 3$ (cycle of length $l \geq 3$), and $\chi(G) \geq (c + \bar{o}(1))^d$, c > 1.

Theorem, Raigorodskii, Rubanov

For all k there is a distance graph G in \mathbb{R}^d , G does not contain cliques of size k, $\chi(G) \ge (c + \bar{o}(1))^d$, c > 1. Moreover, $c \to 1, 239$.. as $k \to \infty$.

This is a probabilistic approach. There is also an explicit construction (due to Raigorodskii and Demechin), but in that case $c \rightarrow 1,239...$, although, for small cliques this method gives better bounds.

We know, that $\chi(\mathbb{R}^d) \ge (1, 239..+o(1))^d$, or, that there is a finite distance graph G in \mathbb{R}^d with $\chi(G) \ge (1, 239..+o(1))^d$.

So, we want to obtain the results of the form:

G is a finite distance graph in \mathbb{R}^d , G does not contain clique of size $k \geq 3$ (cycle of length $l \geq 3$), and $\chi(G) \geq (c + \bar{o}(1))^d$, c > 1.

Theorem, Raigorodskii, Rubanov

For all k there is a distance graph G in \mathbb{R}^d , G does not contain cliques of size k, $\chi(G) \ge (c + \bar{o}(1))^d$, c > 1. Moreover, $c \to 1, 239$.. as $k \to \infty$.

This is a probabilistic approach. There is also an explicit construction (due to Raigorodskii and Demechin), but in that case $c \rightarrow 1,239...$, although, for small cliques this method gives better bounds.

We can also obtain an explicit construction of the graph G with $\chi(G) \geq (c + \bar{o}(1))^d, c > 1$ and without **odd** cycles of length $\leq l$. Unfortunately, we can't say anything about even cycles.

New results

Denote by $\chi_k(\mathbb{R}^d)$ the maximum of the chromatic number among all distance graphs in \mathbb{R}^d that do not contain cliques of size k.

글 🖌 🖌 글 🛌

New results

Denote by $\chi_k(\mathbb{R}^d)$ the maximum of the chromatic number among all distance graphs in \mathbb{R}^d that do not contain cliques of size k.

n	$c, \chi_k(\mathbb{R}^d) \ge (c + \bar{o}(1))^d$	new bound using	new bound using
	 previous bound 	(0,1)-vectors	(-1,0,1)-vectors
3	1.0582	1.0582	_
4	1.0582	1.0663	1.0374
5	1.0582	1.0857	1.0601
6	1.0743	1.0898	1.0754
7	1.0857	1.0995	1.0865
8	1.0933	1.1019	1.0948
9	1.0992	1.1077	1.1013
10	1.1033	1.1093	1.1066
11	1.1075	1.1131	1.1109
12	1.1096	1.1142	1.1145
13	1.1124	1.1170	1.1175
14	1.1151	1.1178	1.1201
15	1.1220	1.1198	1.1224
$\lim_{k\to\infty}$	1.239	1.139	1.154

Andrey Kupavskiy

In fact, all the bounds discussed above are obtained on the graphs of the following type.

$$G = G(d, m, \{a_0, a_1, \dots, a_m\}, x) = (V, E).$$
 The set of vertices is:

$$V = \{x = (x_1, \dots, x_d), x_i \in \{0, 1, \dots, m\},$$

$$|\{i : x_i = j\}| = a_j d, \ \forall j = 0, \dots, m, \ a_i \in (0, 1), \sum_{i=0}^m a_i = 1\}.$$
The set of edges is: $E = \{\{y_1, y_2\} | y_1, y_2 \in V, (y_1, y_2) = xd\}.$

글 > - + 글 > - -

In fact, all the bounds discussed above are obtained on the graphs of the following type.

$$G = G(d, m, \{a_0, a_1, \dots, a_m\}, x) = (V, E).$$
 The set of vertices is:

$$V = \{x = (x_1, \dots, x_d), x_i \in \{0, 1, \dots, m\},$$

$$|\{i : x_i = j\}| = a_j d, \ \forall j = 0, \dots, m, \ a_i \in (0, 1), \sum_{i=0}^m a_i = 1\}.$$
The set of edges is: $E = \{\{y_1, y_2\} | y_1, y_2 \in V, (y_1, y_2) = xd\}.$

We are mostly interested in cases m = 1 and m = 2, i.e. in so-called (0, 1)-graphs and (-1, 0, 1)-graphs.

We want to know for a given set of parameters a_i, x whether the graph $G = G(d, m, \{a_0, a_1, \ldots, a_m\}, x)$ contains cliques of size k or not.

프 (프) -

We want to know for a given set of parameters a_i, x whether the graph $G = G(d, m, \{a_0, a_1, \ldots, a_m\}, x)$ contains cliques of size k or not. In general, we obtained the following theorem:

Theorem

Consider the graph $G = G(d, m, \{a_0, a_1, \ldots, a_m\}, x)$ in the sequence of dimensions d_1, d_2, \ldots , such that $d_i a_j, d_i x \in \mathbb{N} \ \forall i, j$. Then if

$$x < \frac{(k\sum_{i=0}^{m} ia_i)^2 - \{k\sum_{i=0}^{m} ia_i\}^2 + \{k\sum_{i=0}^{m} ia_i\} - k\sum_{j=0}^{m} j^2a_j}{k(k-1)},$$

then G does not contain cliques of size k.

프 > - * 프 > - -

We want to know for a given set of parameters a_i, x whether the graph $G = G(d, m, \{a_0, a_1, \ldots, a_m\}, x)$ contains cliques of size k or not. In general, we obtained the following theorem:

Theorem

Consider the graph $G = G(d, m, \{a_0, a_1, \ldots, a_m\}, x)$ in the sequence of dimensions d_1, d_2, \ldots , such that $d_i a_j, d_i x \in \mathbb{N} \ \forall i, j$. Then if

$$c < \frac{(k\sum_{i=0}^{m} ia_i)^2 - \{k\sum_{i=0}^{m} ia_i\}^2 + \{k\sum_{i=0}^{m} ia_i\} - k\sum_{j=0}^{m} j^2a_j}{k(k-1)},$$

then G does not contain cliques of size k.

In fact, this bound is in some sense sharp.

∃ → (∃ →)

Let $m = 1, a_1 = a, x > 0, a, x \in \mathbb{Q}$, and consider the sequence of dimensions d_1, d_2, \ldots , which satisfies the condition $ad_i, xd_i \in \mathbb{N}$. Consider distance graphs $G_i = G(d_i, 1, \{1 - a, a\}, x)$. Let k be a natural number, $k \ge 3$. If

$$x < \frac{(ka)^2 - \{ka\}^2 - [ka]}{k(k-1)} = f_1,$$

then G_i do not contain complete subgraphs (cliques) on k vertices.

Let $m = 1, a_1 = a, x > 0, a, x \in \mathbb{Q}$, and consider the sequence of dimensions d_1, d_2, \ldots , which satisfies the condition $ad_i, xd_i \in \mathbb{N}$. Consider distance graphs $G_i = G(d_i, 1, \{1 - a, a\}, x)$. Let k be a natural number, $k \ge 3$. If

$$x < \frac{(ka)^2 - \{ka\}^2 - [ka]}{k(k-1)} = f_1,$$

then G_i do not contain complete subgraphs (cliques) on k vertices. Moreover, this bound is in some sense sharp. Namely, there exists a constant c = c(k, a), such that in the sequence of dimensions cd_1, cd_2, \ldots graphs $\tilde{G}_i = G(cd_i, 1, \{1 - a, a\}, f_1)$ contain complete subgraphs on k vertices.

Consider the graph G = G(a, b, x) = (V, E) with the set of vertices:

$$V = \{x = (x_1, \dots, x_d), x_i \in \{-1, 0, 1\}, \\ |\{i : x_i = -1\}| = bd, \ |\{i : x_i = 1\}| = ad, \ a, b \in (0, 1), a + b \le 1\}$$

and with the set of edges: $E=\{\{y_1,y_2\}|y_1,y_2\in V, (y_1,y_2)=-xd\}.$ If

$$x > \frac{k \cdot (a+b) - (k(a-b))^2 - \{k(a-b)\} + \{k(a-b)\}^2}{k(k-1)} = f_1,$$

G does not contain k-cliques.

Moreover, G does not contain k-cliques if $\{ka\}+k(1-a-b)<1$ and

$$x > \frac{(k-k^2)(2a+2b-1) + (4k-4)\{ka\} + 4\{ka\}^2 + 4k(a+b)[ka] - 4(ka)^2}{k(k-1)}$$

Consider the graph G = G(a, b, x) = (V, E) with the set of vertices:

$$V = \{x = (x_1, \dots, x_d), x_i \in \{-1, 0, 1\}, \\ |\{i : x_i = -1\}| = bd, |\{i : x_i = 1\}| = ad, a, b \in (0, 1), a + b \le 1\}$$

and with the set of edges: $E=\{\{y_1,y_2\}|y_1,y_2\in V, (y_1,y_2)=-xd\}.$ If

$$x > \frac{k \cdot (a+b) - (k(a-b))^2 - \{k(a-b)\} + \{k(a-b)\}^2}{k(k-1)} = f_1,$$

G does not contain k-cliques.

Moreover, G does not contain k-cliques if $\{ka\}+k(1-a-b)<1$ and

$$x > \frac{(k-k^2)(2a+2b-1) + (4k-4)\{ka\} + 4\{ka\}^2 + 4k(a+b)[ka] - 4(ka)^2}{k(k-1)}$$

These bounds are sharp

글 🖌 🖌 글 🛌

How to obtain exponential lower bounds on the chromatic number of these graphs?

문제 세 문제

э.

How to obtain exponential lower bounds on the chromatic number of these graphs?

We will consider the (0,1)-case. Let $G=G(d,1,\{1-a,a\},x),$ where $x\leq a/2,$ and let $\ p=d\cdot(a-x)$ be a prime number.

B A B A B A A A

How to obtain exponential lower bounds on the chromatic number of these graphs? We will consider the (0, 1)-case. Let $G = G(d, 1, \{1 - a, a\}, x)$, where $x \le a/2$, and let $p = d \cdot (a - x)$ be a prime number.

Lemma.

If
$$Q \subset V$$
 is such that $|Q| > \sum_{i=0}^{p-1} {d \choose i}$, then there exist $\mathbf{z}, \mathbf{y} \in Q$ with $(\mathbf{z}, \mathbf{y}) = xd$.

How to obtain exponential lower bounds on the chromatic number of these graphs? We will consider the (0,1)-case. Let $G=G(d,1,\{1-a,a\},x),$ where

 $x \leq a/2$, and let $p = d \cdot (a - x)$ be a prime number.

Lemma.

If
$$Q \subset V$$
 is such that $|Q| > \sum_{i=0}^{p-1} {d \choose i}$, then there exist $\mathbf{z}, \mathbf{y} \in Q$ with $(\mathbf{z}, \mathbf{y}) = xd$.

In other words, $\alpha(G) \leq \sum\limits_{i=0}^{p-1} {d \choose i},$ and the chromatic number

$$\chi(G) \ge |V|/\alpha(G) \ge \frac{\binom{d}{ad}}{\sum\limits_{i=0}^{p-1} \binom{d}{i}}.$$

The following problem was posed by K. Borsuk in 1933:

Is it true that any set $\Omega \subset \mathbb{R}^d$ having diameter 1 can be divided into some parts $\Omega_1, \ldots, \Omega_{d+1}$ whose diameters are strictly smaller than 1?

Borsuk partition problem

The following problem was posed by K. Borsuk in 1933:

Is it true that any set $\Omega \subset \mathbb{R}^d$ having diameter 1 can be divided into some parts $\Omega_1, \ldots, \Omega_{d+1}$ whose diameters are strictly smaller than 1?

$$\operatorname{diam} \Omega = \sup_{\mathbf{x}, \mathbf{y} \in \Omega} |\mathbf{x} - \mathbf{y}|$$

The following problem was posed by K. Borsuk in 1933:

Is it true that any set $\Omega \subset \mathbb{R}^d$ having diameter 1 can be divided into some parts $\Omega_1, \ldots, \Omega_{d+1}$ whose diameters are strictly smaller than 1?

$$\operatorname{diam} \Omega = \sup_{\mathbf{x}, \mathbf{y} \in \Omega} |\mathbf{x} - \mathbf{y}|$$

• By $f(\Omega)$ we denote the value

۵

 $f(\Omega) = \min\{f: \ \Omega = \Omega_1 \cup \ldots \cup \Omega_f, \ \forall i \ \operatorname{diam} \Omega_i < \operatorname{diam} \Omega\}.$

$$f(d) = \max_{\Omega \subset \mathbb{R}^d, \text{ diam } \Omega = 1} f(\Omega).$$

The following problem was posed by K. Borsuk in 1933:

Is it true that any set $\Omega \subset \mathbb{R}^d$ having diameter 1 can be divided into some parts $\Omega_1, \ldots, \Omega_{d+1}$ whose diameters are strictly smaller than 1?

$$\operatorname{diam} \Omega = \sup_{\mathbf{x}, \mathbf{y} \in \Omega} |\mathbf{x} - \mathbf{y}|$$

• By $f(\Omega)$ we denote the value

 $f(\Omega) = \min\{f: \ \Omega = \Omega_1 \cup \ldots \cup \Omega_f, \ \forall i \ \operatorname{diam} \Omega_i < \operatorname{diam} \Omega\}.$

$$f(d) = \max_{\Omega \subset \mathbb{R}^d, \text{ diam } \Omega = 1} f(\Omega).$$

• Borsuk's problem: is it true that always f(d) = d + 1?

1993, J. Kahn and G. Kalai disproved the conjecture. They constructed a *finite* set of points in a very high dimension d that could not be decomposed into d+1 subsets of smaller diameter

1993, J. Kahn and G. Kalai disproved the conjecture. They constructed a *finite* set of points in a very high dimension d that could not be decomposed into d+1 subsets of smaller diameter

 $\label{eq:borsuk} \textbf{O} \mbox{ Borsuk's conjecture is shown to be true for } d \leq 3 \mbox{ and false for } d \geq 298$

글 > - + 글 > - -

1993, J. Kahn and G. Kalai disproved the conjecture. They constructed a *finite* set of points in a very high dimension d that could not be decomposed into d + 1 subsets of smaller diameter

 $\label{eq:borsuk} \textbf{O} \mbox{ Borsuk's conjecture is shown to be true for } d \leq 3 \mbox{ and false for } d \geq 298$

 $(1.2255...+o(1))^{\sqrt{d}} \leq f(d) \leq (1.224...+o(1))^d.$

Connection with distance graphs

All known counterexamples are finite sets of points.

All known counterexamples are finite sets of points.

Definition. Graph of diameters

To a finite set of points Ω with a unit diameter we assign the following graph $G_{\Omega} = (V, E)$: V consists of all the points of Ω . E consists of all pairs of points $x, y \in \Omega$, ||x - y|| = 1.

All known counterexamples are finite sets of points.

Definition. Graph of diameters

To a finite set of points Ω with a unit diameter we assign the following graph $G_{\Omega} = (V, E)$: V consists of all the points of Ω . E consists of all pairs of points $x, y \in \Omega$, ||x - y|| = 1.

 $f(\Omega) = \chi(G_{\Omega}).$

All known counterexamples are finite sets of points.

Definition. Graph of diameters

To a finite set of points Ω with a unit diameter we assign the following graph $G_{\Omega} = (V, E)$: V consists of all the points of Ω . E consists of all pairs of points $x, y \in \Omega$, ||x - y|| = 1.

$$f(\Omega) = \chi(G_{\Omega}).$$

To obtain a counterexample to Borsuk conjecture we need to construct a graph of diameters with big chromatic number, namely, bigger than dimension plus one.

프 > - * 프 > - -

Graphs of diameters with certain properties

What if we consider graphs of diameters with certain properties? For example, we want to find a distance graph without cliques of given size and with big chromatic number.

프 (프) -

What if we consider graphs of diameters with certain properties? For example, we want to find a distance graph without cliques of given size and with big chromatic number.

Theorem

For any $r > \frac{1}{2}$, there exists a $d_0 = d_0(r)$ such that for every $d \ge d_0$, one can find a set $\Omega \subset S_r^{d-1}$ which has diameter 1 and does not admit a partition into d + 1 parts of smaller diameter.

글 > - + 글 > - -

What if we consider graphs of diameters with certain properties? For example, we want to find a distance graph without cliques of given size and with big chromatic number.

Theorem

For any $r > \frac{1}{2}$, there exists a $d_0 = d_0(r)$ such that for every $d \ge d_0$, one can find a set $\Omega \subset S_r^{d-1}$ which has diameter 1 and does not admit a partition into d + 1 parts of smaller diameter.

In other words, for every r > 1/2 there exists $\Omega \subset \mathbb{R}^d$, such that $\chi(G_\Omega) > d+1$, and G_Ω lies on the sphere of radius r.

What if we consider graphs of diameters with certain properties? For example, we want to find a distance graph without cliques of given size and with big chromatic number.

Theorem

For any $r > \frac{1}{2}$, there exists a $d_0 = d_0(r)$ such that for every $d \ge d_0$, one can find a set $\Omega \subset S_r^{d-1}$ which has diameter 1 and does not admit a partition into d + 1 parts of smaller diameter.

In other words, for every r > 1/2 there exists $\Omega \subset \mathbb{R}^d$, such that $\chi(G_\Omega) > d+1$, and G_Ω lies on the sphere of radius r.

The last condition on G is very strong, because if r is small enough, then graph G surely does not contain cliques and odd cycles of given size.

The construction. (0, 1)-graph again

The construction of such graphs is similar to the one for distance graphs.

< 注入 < 注入 -

= na0

The construction of such graphs is similar to the one for distance graphs. The initial set of vertices is

 $V = \{ \mathbf{x} = (x_1, \dots, x_n) : \forall i \ x_i \in \{-1, 1\}, \ x_1 = 1, \ x_1 + \dots + x_n = 0 \}.$

Edges again correspond to some scalar product.

A = A = A = OQO
 A

The construction of such graphs is similar to the one for distance graphs. The initial set of vertices is

 $V = \{ \mathbf{x} = (x_1, \dots, x_n) : \forall i \ x_i \in \{-1, 1\}, \ x_1 = 1, \ x_1 + \dots + x_n = 0 \}.$

Edges again correspond to some scalar product.

The main question is how to make a graph of diameters out of a distance graph.

dual mappings of the type

$$\mathbf{y} = (y_1, \dots, y_n) \to \mathbf{y}^{*2} = (y_1^2, y_1 y_2, \dots, y_n y_{n-1}, y_n^2).$$

Thank You

白 ト ・ ヨ ト ・ ヨ ト …