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Nelson–Hadwiger problem

The following problem was posed by Nelson in 1950:

the chromatic number

what is the minimum number of colors which are needed to paint all the
points on the plane so that any two points at distance 1 apart receive
different colors?

this quantity is named the chromatic number χ(R2) of the plane.

the same quantity can be considered in Rd.

Formally,

χ(Rd) = min{m ∈ N : Rd = H1 ∪ . . . ∪Hm :

∀i,∀x, y ∈ Hi |x− y| 6= 1}.
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Distance graph

definition

The distance graph G = (V,E) in Rd is a graph with V ⊂ Rd and
E = {(x, y), x, y ∈ Rd, |x− y| = 1}.

If G = (V,E) is a distance graph in Rd, then obviously χ(G) ≤ χ(Rd).

Theorem, 1951, Erdős, de Bruijn

If we accept the axiom of choice, then the chromatic number of the
space is equal to the chromatic number of some finite distance graph in
that space.
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Asymptotical lower bounds

1971, Raiskii, χ(Rd) ≥ d+ 2

1972, Larman, Rogers, χ(Rd) ≥ c1d2

1978, Larman, χ(Rd) ≥ c2d3

1980, Frankl, ∀t ∃d(t) : ∀d > d(t) χ(Rd) ≥ dt

1981, Frankl, Wilson χ(Rd) ≥ (1, 207..+ o(1))d

2000, Raigorodskii, χ(Rd) ≥ (1, 239..+ o(1))d
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Graphs with big chromatic number without cliques
and cycles

The length of the shortest cycle in graph G is called the girth(G).

Theorem, 1959, Erdős

For every k, l there exists a graph G with χ(G) > k and with
girth(G) > l.

This was the probabilistic approach. There are also some explicit
constructions.
What can we obtain for distance graphs?
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Distance graphs without cliques and cycles

We know, that χ(Rd) ≥ (1, 239..+ o(1))d, or, that there is a finite
distance graph G in Rd with χ(G) ≥ (1, 239..+ o(1))d.

So, we want to obtain the results of the form:

G is a finite distance graph in Rd, G does not contain clique of size
k ≥ 3 (cycle of length l ≥ 3), and χ(G) ≥ (c+ ō(1))d, c > 1.

Theorem, Raigorodskii, Rubanov

For all k there is a distance graph G in Rd, G does not contain cliques of
size k, χ(G) ≥ (c+ ō(1))d, c > 1. Moreover, c→ 1, 239.. as k →∞.

This is a probabilistic approach. There is also an explicit construction
(due to Raigorodskii and Demechin), but in that case c9 1, 239..,
although, for small cliques this method gives better bounds.

We can also obtain an explicit construction of the graph G with
χ(G) ≥ (c+ ō(1))d, c > 1 and without odd cycles of length ≤ l.
Unfortunately, we can’t say anything about even cycles.
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New results

Denote by χk(Rd) the maximum of the chromatic number among all
distance graphs in Rd that do not contain cliques of size k.

n c, χk(Rd) ≥ (c+ ō(1))d

– previous bound
new bound using
(0, 1)-vectors

new bound using
(−1, 0, 1)-vectors

3 1.0582 1.0582 –
4 1.0582 1.0663 1.0374
5 1.0582 1.0857 1.0601
6 1.0743 1.0898 1.0754
7 1.0857 1.0995 1.0865
8 1.0933 1.1019 1.0948
9 1.0992 1.1077 1.1013
10 1.1033 1.1093 1.1066
11 1.1075 1.1131 1.1109
12 1.1096 1.1142 1.1145
13 1.1124 1.1170 1.1175
14 1.1151 1.1178 1.1201
15 1.1220 1.1198 1.1224
limk→∞ 1.239 1.139 1.154
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(0, 1)-graphs, (−1, 0, 1)-graphs.

In fact, all the bounds discussed above are obtained on the graphs of the
following type.

G = G(d,m, {a0, a1, . . . , am}, x) = (V,E). The set of vertices is:

V = {x = (x1, . . . , xd), xi ∈ {0, 1, . . . ,m},

|{i : xi = j}| = ajd, ∀j = 0, . . . ,m, ai ∈ (0, 1),

m∑
i=0

ai = 1}.

The set of edges is: E = {{y1, y2}|y1, y2 ∈ V, (y1, y2) = xd}.

We are mostly interested in cases m = 1 and m = 2, i.e. in so-called
(0, 1)-graphs and (−1, 0, 1)-graphs.
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threshold for containing a k-clique

We want to know for a given set of parameters ai, x whether the graph
G = G(d,m, {a0, a1, . . . , am}, x) contains cliques of size k or not.

In general, we obtained the following theorem:

Theorem

Consider the graph G = G(d,m, {a0, a1, . . . , am}, x) in the sequence of
dimensions d1, d2, . . . , such that diaj , dix ∈ N ∀i, j. Then if

x <
(k
∑m

i=0 iai)
2 − {k

∑m
i=0 iai}2 + {k

∑m
i=0 iai} − k

∑m
j=0 j

2aj

k(k − 1)
,

then G does not contain cliques of size k.

In fact, this bound is in some sense sharp.
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threshold for containing a k-clique. (0, 1) case

Theorem

Let m = 1, a1 = a, x > 0, a, x ∈ Q, and consider the sequence of dimensions
d1, d2, . . . , which satisfies the condition adi, xdi ∈ N. Consider distance graphs
Gi = G(di, 1, {1− a, a}, x). Let k be a natural number, k ≥ 3. If

x <
(ka)2 − {ka}2 − [ka]

k(k − 1)
= f1,

then Gi do not contain complete subgraphs (cliques) on k vertices.

Moreover, this bound is in some sense sharp. Namely, there exists a constant
c = c(k, a), such that in the sequence of dimensions cd1, cd2, . . . graphs
G̃i = G(cdi, 1, {1− a, a}, f1) contain complete subgraphs on k vertices.
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threshold for containing a k-clique. (−1, 0, 1) case

Theorem

Consider the graph G = G(a, b, x) = (V,E) with the set of vertices:

V = {x = (x1, . . . , xd), xi ∈ {−1, 0, 1},
|{i : xi = −1}| = bd, |{i : xi = 1}| = ad, a, b ∈ (0, 1), a+ b ≤ 1}

and with the set of edges: E = {{y1, y2}|y1, y2 ∈ V, (y1, y2) = −xd}. If

x >
k · (a+ b)− (k(a− b))2 − {k(a− b)}+ {k(a− b)}2

k(k − 1)
= f1,

G does not contain k-cliques.
Moreover, G does not contain k-cliques if {ka}+ k(1− a− b) < 1 and

x >
(k − k2)(2a+ 2b− 1) + (4k − 4){ka}+ 4{ka}2 + 4k(a+ b)[ka]− 4(ka)2

k(k − 1)
.

These bounds are sharp
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Linear-algebraic method

How to obtain exponential lower bounds on the chromatic number of
these graphs?

We will consider the (0, 1)-case. Let G = G(d, 1, {1− a, a}, x), where
x ≤ a/2, and let p = d · (a− x) be a prime number.

Lemma.

If Q ⊂ V is such that |Q| >
p−1∑
i=0

(
d
i

)
, then there exist z,y ∈ Q with

(z,y) = xd.

In other words, α(G) ≤
p−1∑
i=0

(
d
i

)
, and the chromatic number

χ(G) ≥ |V |/α(G) ≥
(
d
ad

)
p−1∑
i=0

(
d
i

) .
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Borsuk partition problem

The following problem was posed by K. Borsuk in 1933:

Is it true that any set Ω ⊂ Rd having diameter 1 can be divided into
some parts Ω1, . . . ,Ωd+1 whose diameters are strictly smaller than 1?

diam Ω = sup
x,y∈Ω

|x− y|

By f(Ω) we denote the value

f(Ω) = min{f : Ω = Ω1 ∪ . . . ∪ Ωf , ∀ i diam Ωi < diam Ω}.

f(d) = max
Ω⊂Rd, diam Ω=1

f(Ω).

Borsuk’s problem: is it true that always f(d) = d+ 1?

Andrey Kupavskiy The chromatic numbers of distance graphs



Borsuk partition problem

The following problem was posed by K. Borsuk in 1933:

Is it true that any set Ω ⊂ Rd having diameter 1 can be divided into
some parts Ω1, . . . ,Ωd+1 whose diameters are strictly smaller than 1?

diam Ω = sup
x,y∈Ω

|x− y|

By f(Ω) we denote the value

f(Ω) = min{f : Ω = Ω1 ∪ . . . ∪ Ωf , ∀ i diam Ωi < diam Ω}.

f(d) = max
Ω⊂Rd, diam Ω=1

f(Ω).

Borsuk’s problem: is it true that always f(d) = d+ 1?

Andrey Kupavskiy The chromatic numbers of distance graphs



Borsuk partition problem

The following problem was posed by K. Borsuk in 1933:

Is it true that any set Ω ⊂ Rd having diameter 1 can be divided into
some parts Ω1, . . . ,Ωd+1 whose diameters are strictly smaller than 1?

diam Ω = sup
x,y∈Ω

|x− y|

By f(Ω) we denote the value

f(Ω) = min{f : Ω = Ω1 ∪ . . . ∪ Ωf , ∀ i diam Ωi < diam Ω}.

f(d) = max
Ω⊂Rd, diam Ω=1

f(Ω).

Borsuk’s problem: is it true that always f(d) = d+ 1?

Andrey Kupavskiy The chromatic numbers of distance graphs



Borsuk partition problem

The following problem was posed by K. Borsuk in 1933:

Is it true that any set Ω ⊂ Rd having diameter 1 can be divided into
some parts Ω1, . . . ,Ωd+1 whose diameters are strictly smaller than 1?

diam Ω = sup
x,y∈Ω

|x− y|

By f(Ω) we denote the value

f(Ω) = min{f : Ω = Ω1 ∪ . . . ∪ Ωf , ∀ i diam Ωi < diam Ω}.

f(d) = max
Ω⊂Rd, diam Ω=1

f(Ω).

Borsuk’s problem: is it true that always f(d) = d+ 1?

Andrey Kupavskiy The chromatic numbers of distance graphs



History and some known results

1 1946, H. Hadwiger, if Ω has smooth boundary, then f(Ω) ≤ d+ 1

1993, J. Kahn and G. Kalai disproved the conjecture. They constructed a
finite set of points in a very high dimension d that could not be
decomposed into d+ 1 subsets of smaller diameter

2 Borsuk’s conjecture is shown to be true for d ≤ 3 and false for
d ≥ 298

3 (1.2255...+ o(1))
√
d ≤ f(d) ≤ (1.224...+ o(1))d.
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Connection with distance graphs

All known counterexamples are finite sets of points.

Definition. Graph of diameters

To a finite set of points Ω with a unit diameter we assign the following
graph GΩ = (V,E): V consists of all the points of Ω. E consists of all
pairs of points x, y ∈ Ω, ‖x− y‖ = 1.

f(Ω) = χ(GΩ).

To obtain a counterexample to Borsuk conjecture we need to construct a
graph of diameters with big chromatic number, namely, bigger than
dimension plus one.
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Graphs of diameters with certain properties

What if we consider graphs of diameters with certain properties? For
example, we want to find a distance graph without cliques of given size
and with big chromatic number.

Theorem

For any r > 1
2 , there exists a d0 = d0(r) such that for every d ≥ d0, one

can find a set Ω ⊂ Sd−1
r which has diameter 1 and does not admit a

partition into d+ 1 parts of smaller diameter.

In other words, for every r > 1/2 there exists Ω ⊂ Rd, such that
χ(GΩ) > d+ 1, and GΩ lies on the sphere of radius r.

The last condition on G is very strong, because if r is small enough, then
graph G surely does not contain cliques and odd cycles of given size.
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The construction. (0, 1)-graph again

The construction of such graphs is similar to the one for distance
graphs.

The initial set of vertices is

V = {x = (x1, . . . , xn) : ∀ i xi ∈ {−1, 1}, x1 = 1, x1 + . . .+ xn = 0}.

Edges again correspond to some scalar product.
The main question is how to make a graph of diameters out of a distance
graph.

dual mappings of the type

y = (y1, . . . , yn)→ y∗2 = (y2
1 , y1y2, . . . , ynyn−1, y

2
n).
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The end

Thank You
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