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Nelson–Hadwiger problem

The following problem was posed by Nelson in 1950:

the chromatic number

what is the minimum number of colors which are needed to paint all the
points on the plane so that any two points at distance 1 apart receive
different colors?

this quantity is named the chromatic number χ(R2) of the plane.

the same quantity can be considered in Rd.

Formally,

χ(Rd) = min{m ∈ N : Rd = H1 ∪ . . . ∪Hm :

∀i,∀x, y ∈ Hi |x− y| 6= 1}.
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Distance graph

definition

the distance graph G = (V,E) in Rd is a graph with V ⊂ Rd and
E = {(x, y), x, y ∈ Rd, |x− y| = 1}.

1951, Erdős, de Bruijn: If we accept the axiom of choice, then the
chromatic number of the space is equal to the chromatic number of some
finite distance graph in that space.

Andrey Kupavskiy The chromatic numbers of the normed spaces



Distance graph

definition

the distance graph G = (V,E) in Rd is a graph with V ⊂ Rd and
E = {(x, y), x, y ∈ Rd, |x− y| = 1}.
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Some known results in small dimensions

1 4 ≤ χ(R2) ≤ 7

2 2001, Nechushtan 6 ≤ χ(R3) ≤ 15, Coulson, 2003

3

dim 4 5 6 7 8 9 10 11 12
χ ≥ 7 9 11 15 16 21 23 25 27
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Asymptotical lower bounds

1971, Raiskii, χ(Rd) ≥ d+ 2

1972, Larman, Rogers, χ(Rd) ≥ c1d2

1978, Larman, χ(Rd) ≥ c2d3

1980, Frankl, ∀t ∃d(t) : ∀d > d(t) χ(Rd) ≥ dt

1981, Frankl, Wilson χ(Rd) ≥ (1, 207..+ o(1))d

2000, Raigorodskii, χ(Rd) ≥ (1, 239..+ o(1))d
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Generalizations and related problems

In the definition of the chromatic number instead of Rn with Euclidean
metric we can consider an arbitrary space with an arbitrary metric.

There is a large number of results concerning the chromatic number
of Qd and Sd with Euclidean metric and the chromatic number of
the space Rdp with lp-metric.

We can forbid any set of distances instead of the unit distance.

The chromatic number of the plane with several forbidden distances
was studied. There are also some asymptotic bounds in the growing
dimension.

We also can consider colorings of the space of certain type.

Measurable chromatic numberχm(R2) (i.e. each color is a
measurable set) is well-studied. We have 5 ≤ χm(R2) ≤ 7.
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Asymptotical bounds

We denote by χ(RdK , A) the chromatic number of the space with the
norm induced by a convex centrally symmetric bounded body K and with
the set A of forbidden distances.
By χ(Rdp) we denote the chromatic number of the space with lp-norm
and with one forbidden distance.

1 For p = 2 (classical case) we have
(1, 239..+ o(1))d ≤ χ(Rd2) = χ(Rd) ≤ (3 + o(1))d. The upper
bound is due to Larman, Rogers, 1972.

2 We have

χ(Rdp) ≥ (1, 207...+ o(1))d,

χ(Rd∞) = 2d and
χ(Rd1) ≥ (1, 365...+ o(1))d.

Last result is due to Raigorodskii.
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New results

Füredi and Kang in several works established different upper estimates on
the χ(Rdp). The best one is

χ(RdK) ≤ cd(ln d)5d. (2008)

Theorem 1

We have

χ(RdK) ≤ (ln d+ ln ln d+ ln 4 + 1 + o(1))

ln
√

2
· 4d.

Andrey Kupavskiy The chromatic numbers of the normed spaces



New results
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New results. lp case.

We can improve this theorem even more in the case of the lp-space Rdp.

Theorem 2

We have
χ(Rdp) ≤ 2(1+cp+δd)d,

where δd → 0 as d→∞, and cp < 1 as p > 2 and cp → 0 as p→∞.

In particular, for p(d) > ω(d)d ln ln d, ω(d)→∞, we can obtain

χ(Rdp(d)) ≤ (ln d+ ln ln d+ ln 2 + 1 + o(1))d2d = (2 + o(1))d.

Remind, that χ(Rd∞) = 2d.
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Main ingredients of the proof

1 At first we prove a slight variation of Erdős–Rogers theorem (1962)
about covering the space by copies of convex bodies.

2 We use the result of Schmidt (1963), that strengthens famous
Minkowski–Hlawka theorem.

3 In Theorem 2 we also use a result of Odlyzko, Rush concerning
packing of superballs, i.e. bodies of the form ‖x‖p ≤ 1.

4 Then we construct a suitable lattice packing and cover the space by
its translates using the covering technique from item 1.
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New results

In addition, we proved two theorems concerning the chromatic number of
the space with a segment of forbidden distances. Let A = [1, l].

Theorem 3. Upper bounds

Let RdK be a normed space.

1 Then χ(RdK , A) ≤ (2(l + 1) + o(1))d.

2 Let p > 2. Then χ(Rdp, A) ≤ (2cp(l + 1) + o(1))d, cp < 1, cp → 0
when p→∞.

Theorem 4. Lower bounds

1 Let l ≥ 2. Then χ(RdK , A) ≥ (l/2)d.

2 Let l ≥ 2. Then χ(Rdp, A) ≥ (b · l)d, where b =
p′√2
2 and

p′ = max{p, p
p−1}.

3 Let l ≥ 2. Then χ(Rd, A) ≥ (b · l)d where b ≈ 0, 755 ·
√

2.
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Comment on Theorem 3. The chromatic number
with multiple forbidden distances

We will limit ourself to the Euclidean case.
Let B be an arbitrary k-element set.

In general, we have an upper bound χ(Rd, B) ≤ (3 + o(1))dk.

On the other hand, best known lower bounds on the chromatic number
of the space with k forbidden distances are attained on the set
B0 = {

√
2p, . . . ,

√
2kp}, where p is a certain prime number.

The estimate is of the form χ(Rd, B0) > (c1k)c2d with some constants
c1, c2.

B0 ⊂ A = [1, l] if l =
√
k, so, by Theorem 3,

χ(Rd, B0) ≤ (2(
√
k + 1) + o(1))d = (c′1k)c

′
2d with some c′1, c

′
2.

Unfortunately, Theorem 3 does not give an improvement of the estimate
from item 1 for an arbitrary k-element set B.
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Comment on theorem 4. The gap between upper
and lower bounds

1 In case of an arbitrary norm the gap between upper and lower bound
in theorems 3 and 4 is

(4 l+1
l + ō(1))d = (4 + ō(1))d as l, d→∞.

2 In the Euclidean case the gap is equal to

( 2
b
l+1
l + ō(1))d ≈ (1, 87 l+1

l + ō(1))d = (1, 87 + ō(1))d as l, d→∞.

3 This is even better than the gap between upper and lower bounds
for classical chromatic number. It is equal to

( 3
1.239 + ō(1))d ≈ (2.421 + ō(1))d. as d→∞.
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3 This is even better than the gap between upper and lower bounds
for classical chromatic number. It is equal to

( 3
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l + ō(1))d = (4 + ō(1))d as l, d→∞.

2 In the Euclidean case the gap is equal to

( 2
b
l+1
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Proof of theorems 3 and 4

1 Proof of the upper bounds is quite similar to the proof of Theorem 1
and 2.

2 The technique used to obtain lower bounds is also based on a
construction of some packing.

3 Additional ingredients are famous Kabatyanskiy – Levenshtein bound
and Pichugov’s bound on the radius of Jung’s ball in Rdp.
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Appendix. Proof of the lower bound

Fix an appropriate coloring of RdK .

We choose a point x painted in red. Then we draw three homothetic
copies of K with center in x. One (Kx

1 ) is of radius 1 (we mean that it is
the body ‖x‖k ≤ 1), the other (Kx

l ) is of radius l, the third (Kx
l/2) is of

radius l/2.
There are no points of red color in Kx

l \Kx
1 .Then we choose another

point not in Kx
l , colored in red etc.

Bodies Kx
l/2 form a packing in RdK , meanwhile, all points of red color are

contained in the union of Kx
1 . The density of such union is not bigger

than V ol(Kx
1 )/V ol(Kx

l/2) = (2/l)d. So, the chromatic number is not less

than (l/2)d.
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The end

Thank You
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