# On densest sets avoiding unit distance in spaces of small dimension

Andrey Kupavskii, Andrey Raigorodskii, Maria Titova

Lomonosov Moscow State University Moscow, Russia

Infinite and Finite Sets Conference 13-17 June 2011, Budapest

Image: A math a math

- The problem of finding densest sets avoiding unit distance.
  - History of the problem.
  - Brief exhibition of the method used to obtain the results.
- Application of the results to the Ramsey-type problem concerning finding distance subgraphs of graphs in small-dimensional spaces.

### Main definitions

#### Definition

The *upper density* of a Lebesgue measurable set  $A \subseteq \mathbb{R}^n$  is

$$\overline{\delta}(A) = \lim_{r \to \infty} \frac{V\left(A \cap B_n^{\mathbf{0}}(r)\right)}{V(B_n^{\mathbf{0}}(r))},$$

where  $B_n^{\mathbf{0}}(r)$  is the ball of radius r centered at the origin, and V(X) denotes volume of the set X.

・ロト ・回ト ・ヨト ・

### Main definitions

#### Definition

The *upper density* of a Lebesgue measurable set  $A \subseteq \mathbb{R}^n$  is

$$\overline{\delta}(A) = \lim_{r \to \infty} \frac{V\left(A \cap B_n^{\mathbf{0}}(r)\right)}{V(B_n^{\mathbf{0}}(r))},$$

where  $B_n^{\mathbf{0}}(r)$  is the ball of radius r centered at the origin, and V(X) denotes volume of the set X.

### Definition

A subset S of the n-dimensional Euclidean space  $\mathbb{R}^n$  avoids unit distance, if the distance between any two points in S never equals 1.

イロト イ団ト イヨト イヨト

### Main definitions

#### Definition

The *upper density* of a Lebesgue measurable set  $A \subseteq \mathbb{R}^n$  is

$$\overline{\delta}(A) = \lim_{r \to \infty} \frac{V\left(A \cap B_n^{\mathbf{0}}(r)\right)}{V(B_n^{\mathbf{0}}(r))},$$

where  $B_n^{\mathbf{0}}(r)$  is the ball of radius r centered at the origin, and V(X) denotes volume of the set X.

### Definition

A subset S of the n-dimensional Euclidean space  $\mathbb{R}^n$  avoids unit distance, if the distance between any two points in S never equals 1.

### Definition

The extreme density of such set is

 $m_1(\mathbb{R}^n) = \sup\left\{\overline{\delta}(A) : A \subseteq \mathbb{R}^n \text{ is measurable and avoids unit distance}\right\}.$ 

Relation between  $m_1(\mathbb{R}^n)$  and the measurable chromatic number  $\chi^m(\mathbb{R}^n)$  of the Euclidean space:

#### Definition

The chromatic number  $\chi(\mathbb{R}^n)$  is the minimum number of colors needed to paint all the points in  $\mathbb{R}^n$  in such a way that any two points at unit distance apart receive different colors.

For  $\chi^m(\mathbb{R}^n)$  it is additionally required that points receiving the same color form Lebesgue measurable sets.

< ロ > < 同 > < 三 > < 三

Relation between  $m_1(\mathbb{R}^n)$  and the measurable chromatic number  $\chi^m(\mathbb{R}^n)$  of the Euclidean space:

#### Definition

The chromatic number  $\chi(\mathbb{R}^n)$  is the minimum number of colors needed to paint all the points in  $\mathbb{R}^n$  in such a way that any two points at unit distance apart receive different colors.

For  $\chi^m(\mathbb{R}^n)$  it is additionally required that points receiving the same color form Lebesgue measurable sets.

 $\chi^m(\mathbb{R}^n) \geq 1/m_1(\mathbb{R}^n) \Longrightarrow$ 

upper bounds on  $m_1(\mathbb{R}^n)$  are lower bounds on the measurable chromatic number  $\chi^m(\mathbb{R}^n)$ 

・ロン ・四 と ・ ヨ と ・ ヨ と …

### Bounds on $\chi^m(\mathbb{R}^n)$ and $m_1(\mathbb{R}^n)$

Upper bounds on  $m_1(\mathbb{R}^n), n \ge 2$ , are due to F. M. de Oliveira Filho, F. Vallentin (2008). Bound on  $\chi^m(\mathbb{R}^2)$  is due to K.J. Falconer (1981). The only case where lower bound on  $\chi^m(\mathbb{R}^n)$  is better than  $1/m_1(\mathbb{R}^n)$  is the case of the plane.

| n  | $\chi^m(\mathbb{R}^n) \ge$ | $m_1(\mathbb{R}^n) \leq$ |
|----|----------------------------|--------------------------|
|    |                            |                          |
| 2  | 5                          | 0.26841                  |
| 3  | 7                          | 0.16560                  |
| 4  | 9                          | 0.11293                  |
| 5  | 14                         | 0.07528                  |
| 6  | 20                         | 0.05157                  |
| 7  | 28                         | 0.03612                  |
| 8  | 39                         | 0.02579                  |
| 9  | 54                         | 0.01873                  |
| 10 | 73                         | 0.01380                  |
| 11 | 97                         | 0.01031                  |
| 12 | 129                        | 0.00780                  |

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

### Sets avoiding unit distance: motivation

• Study of  $\chi(\mathbb{R}^n)$ :

With some conditions on the structure of the set X the following theorem holds:

### Theorem (Erdős, Rogers)

There exists a covering of the space by  $\delta^{-1}(X) \cdot n \ln n (1+o(1))$  copies of the set X.

Image: A match the second s

### Sets avoiding unit distance: motivation

• Study of  $\chi(\mathbb{R}^n)$ :

With some conditions on the structure of the set X the following theorem holds:

#### Theorem (Erdős, Rogers)

There exists a covering of the space by  $\delta^{-1}(X) \cdot n \ln n (1+o(1))$  copies of the set X.

#### Corollary

If X is a set avoiding unit distance, then holds

$$\chi(\mathbb{R}^n) \le \delta^{-1}(X) \cdot n \ln n(1 + o(1)).$$

• • • • • • • • • • • •

### Sets avoiding unit distance: motivation

• Study of  $\chi(\mathbb{R}^n)$ :

With some conditions on the structure of the set X the following theorem holds:

#### Theorem (Erdős, Rogers)

There exists a covering of the space by  $\delta^{-1}(X) \cdot n \ln n (1+o(1))$  copies of the set X.

#### Corollary

If  $\boldsymbol{X}$  is a set avoiding unit distance, then holds

 $\chi(\mathbb{R}^n) \le \delta^{-1}(X) \cdot n \ln n(1 + o(1)).$ 

The best known asymptotic upper bound on the chromatic number of  $\mathbb{R}^n$  is obtained using this theorem:  $\chi(\mathbb{R}^n) \leq (3 + o(1))^n$ .

<ロ> (日) (日) (日) (日) (日)

### Lower bounds on $m_1(\mathbb{R}^n)$ : main result

•  $m_1(\mathbb{R}^2) \ge 0.2293$  (H. T. Croft).

・ロト ・回ト ・ヨト ・ヨ

### Lower bounds on $m_1(\mathbb{R}^n)$ : main result

- $m_1(\mathbb{R}^2) \ge 0.2293$  (H. T. Croft).
- 2 We obtain new lower bounds on  $m_1(\mathbb{R}^n)$ ,  $n = 3, \ldots, 8$ .

### Theorem (K.,R.,T.)

The following inequalities hold:

$$\begin{split} m_1(\mathbb{R}^3) &\geq 0.09877, \qquad m_1(\mathbb{R}^6) \geq 0.00806, \\ m_1(\mathbb{R}^4) &\geq 0.04413, \qquad m_1(\mathbb{R}^7) \geq 0.00352, \\ m_1(\mathbb{R}^5) &\geq 0.01833, \qquad m_1(\mathbb{R}^8) \geq 0.00165. \end{split}$$

メロト メポト メヨト メヨ

• 
$$m_1(\mathbb{R}^2) \ge 0.2293$$
 (H. T. Croft).

2 We obtain new lower bounds on  $m_1(\mathbb{R}^n)$ ,  $n = 3, \ldots, 8$ .

### Theorem (K.,R.,T.)

The following inequalities hold:

$$m_1(\mathbb{R}^3) \ge 0.09877, \qquad m_1(\mathbb{R}^6) \ge 0.00806,$$
  

$$m_1(\mathbb{R}^4) \ge 0.04413, \qquad m_1(\mathbb{R}^7) \ge 0.00352,$$
  

$$m_1(\mathbb{R}^5) \ge 0.01833, \qquad m_1(\mathbb{R}^8) \ge 0.00165.$$

Note: sets constructed to obtain these bounds satisfy the conditions of Erdős – Rogers theorem.

イロト イヨト イヨト イヨト

### Some definitions and notations

• A lattice  $L_n$  in  $\mathbb{R}^n$  is the set

$$L_n = \left\{ \mathbf{a} \in \mathbb{R}^n \mid \mathbf{a} = \sum_{i=1}^n k_i \cdot \mathbf{v}_i, \ k_i \in \mathbb{Z} \right\}.$$

・ロト ・回ト ・ヨト ・

### Some definitions and notations

• A lattice  $L_n$  in  $\mathbb{R}^n$  is the set

$$L_n = \left\{ \mathbf{a} \in \mathbb{R}^n \mid \mathbf{a} = \sum_{i=1}^n k_i \cdot \mathbf{v}_i, \ k_i \in \mathbb{Z} \right\}.$$

• The fundamental domain  $\Lambda$  of  $L_n$  is the following set of points:

$$\Lambda = \left\{ \sum_{i=1}^{n} t_i \cdot \mathbf{v}_i, \ 0 \le t_i < 1 \right\}.$$

• The determinant det  $L_n$  of the lattice  $L_n$  is the volume of its fundamental domain.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

### Some definitions and notations

• A lattice  $L_n$  in  $\mathbb{R}^n$  is the set

$$L_n = \left\{ \mathbf{a} \in \mathbb{R}^n \mid \mathbf{a} = \sum_{i=1}^n k_i \cdot \mathbf{v}_i, \ k_i \in \mathbb{Z} \right\}.$$

• The fundamental domain  $\Lambda$  of  $L_n$  is the following set of points:

$$\Lambda = \left\{ \sum_{i=1}^{n} t_i \cdot \mathbf{v}_i, \ 0 \le t_i < 1 \right\}.$$

- The determinant det  $L_n$  of the lattice  $L_n$  is the volume of its fundamental domain.
- A collection  $C = \{C_1, C_2, ...\}$  of compact sets with nonempty interiors is said to form *a packing in*  $\mathbb{R}^n$  if

$$\Omega = \bigcup_{i} C_i \subseteq \mathbb{R}^n$$

and no two sets in C have an interior point in common. We also say that the set  $\Omega$  is a packing in  $\mathbb{R}^n$ .  If the packing C in ℝ<sup>n</sup> consists of all translates of a particular Lebesgue measurable set C ⊂ ℝ<sup>n</sup> by vectors belonging to a given lattice L<sub>n</sub>, i.e.

$$\mathcal{C} = \{ C + \mathbf{a} \, | \, \mathbf{a} \in L_n \},\$$

then C (as well as  $\Omega$ ) is said to be a *lattice packing*.

Image: A match the second s

 If the packing C in ℝ<sup>n</sup> consists of all translates of a particular Lebesgue measurable set C ⊂ ℝ<sup>n</sup> by vectors belonging to a given lattice L<sub>n</sub>, i.e.

$$\mathcal{C} = \{ C + \mathbf{a} \, | \, \mathbf{a} \in L_n \},\$$

then C (as well as  $\Omega$ ) is said to be a *lattice packing*.

• Its density  $\delta(\Omega)$  is defined as follows:

$$\delta(\Omega) = \frac{V(C)}{\det L_n}.$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 If the packing C in ℝ<sup>n</sup> consists of all translates of a particular Lebesgue measurable set C ⊂ ℝ<sup>n</sup> by vectors belonging to a given lattice L<sub>n</sub>, i.e.

$$\mathcal{C} = \{ C + \mathbf{a} \, | \, \mathbf{a} \in L_n \},\$$

then C (as well as  $\Omega$ ) is said to be a *lattice packing*.

• Its density  $\delta(\Omega)$  is defined as follows:

$$\delta(\Omega) = \frac{V(C)}{\det L_n}.$$

• Note:  $\delta(\Omega) = \overline{\delta}(\Omega)$  (according to the definition of the upper density).

**ADEA** 

Let  $L_n$  be the lattice on which the densest packing  $\Omega(r)$  of balls of radius r in  $\mathbb{R}^n$  is realized.

 $\Omega(r) = \bigcup_{\mathbf{a} \in L_n} B_n^{\mathbf{a}}(r), \text{ where } B_n^{\mathbf{a}}(r) \text{ is the (open) ball in } \mathbb{R}^n \text{ of radius } r \text{ centered in the lattice point } \mathbf{a} \in L_n.$ 

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let  $L_n$  be the lattice on which the densest packing  $\Omega(r)$  of balls of radius r in  $\mathbb{R}^n$  is realized.

 $\Omega(r) = \bigcup_{\mathbf{a} \in L_n} B_n^{\mathbf{a}}(r), \text{ where } B_n^{\mathbf{a}}(r) \text{ is the (open) ball in } \mathbb{R}^n \text{ of radius } r \text{ centered in the lattice point } \mathbf{a} \in L_n.$ 

- Decrease two times the radius of each ball.
- **2** New set avoids distance r.
- Obensity of the new set is  $\frac{\delta(\Omega(r))}{2^n}$ . This value is the lower bound on  $m_1(\mathbb{R}^n)$ .



### Croft's set

The density of the best packing on the plane:  $\frac{\pi}{2\sqrt{3}} \approx 0.9069$ . Using the method described above we can obtain:

 $m_1(\mathbb{R}^2) \ge 0.2267.$ 

<ロ> (日) (日) (日) (日) (日)

### Croft's set

The density of the best packing on the plane:  $\frac{\pi}{2\sqrt{3}} \approx 0.9069$ .

Using the method described above we can obtain:

 $m_1(\mathbb{R}^2) > 0.2267.$ 

Croft made an example of the set, which density is equal to 0.2293..., improving the previous bound.



Croft's set

Image: A math a math

### Our construction of densest sets in $\mathbb{R}^n$ , $n = 3, \ldots, 8$

#### Definition

A Voronoi polyhedron  $W_{L_n}^{\mathbf{a}}$  of the lattice  $L_n$  in  $\mathbb{R}^n$  in the given lattice point  $\mathbf{a}$  is a set of points of  $\mathbb{R}^n$ , which are at least as close to  $\mathbf{a}$  as to any other point of the lattice:

$$W_{L_n}^{\mathbf{a}} = \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{a}| \le |\mathbf{x} - \mathbf{b}| \ \forall \ \mathbf{b} \in L_n \}.$$

Image: A math a math

### Our construction of densest sets in $\mathbb{R}^n$ , $n = 3, \ldots, 8$

#### Definition

A Voronoi polyhedron  $W_{L_n}^{\mathbf{a}}$  of the lattice  $L_n$  in  $\mathbb{R}^n$  in the given lattice point  $\mathbf{a}$  is a set of points of  $\mathbb{R}^n$ , which are at least as close to  $\mathbf{a}$  as to any other point of the lattice:

$$W_{L_n}^{\mathbf{a}} = \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{a}| \le |\mathbf{x} - \mathbf{b}| \ \forall \ \mathbf{b} \in L_n \}.$$

• Let  $L_n$  be the lattice on which the densest packing of balls of given radius in  $\mathbb{R}^n$  is realized.

Image: A match the second s

### Our construction of densest sets in $\mathbb{R}^n$ , $n = 3, \ldots, 8$

#### Definition

A Voronoi polyhedron  $W_{L_n}^{\mathbf{a}}$  of the lattice  $L_n$  in  $\mathbb{R}^n$  in the given lattice point  $\mathbf{a}$  is a set of points of  $\mathbb{R}^n$ , which are at least as close to  $\mathbf{a}$  as to any other point of the lattice:

$$W_{L_n}^{\mathbf{a}} = \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{a}| \le |\mathbf{x} - \mathbf{b}| \ \forall \ \mathbf{b} \in L_n \}.$$

• Let  $L_n$  be the lattice on which the densest packing of balls of given radius in  $\mathbb{R}^n$  is realized.

2 Put: 
$$X^{\mathbf{a}}(r) := B^{\mathbf{a}}_n(r) \cap W^{\mathbf{a}}_{L_n}$$
 for every  $\mathbf{a} \in L_n$ .

Image: A match the second s

A Voronoi polyhedron  $W_{L_n}^{\mathbf{a}}$  of the lattice  $L_n$  in  $\mathbb{R}^n$  in the given lattice point  $\mathbf{a}$  is a set of points of  $\mathbb{R}^n$ , which are at least as close to  $\mathbf{a}$  as to any other point of the lattice:

$$W_{L_n}^{\mathbf{a}} = \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{a}| \le |\mathbf{x} - \mathbf{b}| \ \forall \ \mathbf{b} \in L_n \}.$$

• Let  $L_n$  be the lattice on which the densest packing of balls of given radius in  $\mathbb{R}^n$  is realized.

2 Put: 
$$X^{\mathbf{a}}(r) := B^{\mathbf{a}}_n(r) \cap W^{\mathbf{a}}_{L_n}$$
 for every  $\mathbf{a} \in L_n$ .

**9** Do homothetic transformations of  $X^{\mathbf{a}}(r)$  with homothety center in  $\mathbf{a} \in L_n$ and such coefficient k(r) that the union  $\Omega(r)$  of obtained sets avoids unit distance.

(日) (同) (三) (三) (三)

A Voronoi polyhedron  $W_{L_n}^{\mathbf{a}}$  of the lattice  $L_n$  in  $\mathbb{R}^n$  in the given lattice point  $\mathbf{a}$  is a set of points of  $\mathbb{R}^n$ , which are at least as close to  $\mathbf{a}$  as to any other point of the lattice:

$$W_{L_n}^{\mathbf{a}} = \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{a}| \le |\mathbf{x} - \mathbf{b}| \ \forall \ \mathbf{b} \in L_n \}.$$

- Let  $L_n$  be the lattice on which the densest packing of balls of given radius in  $\mathbb{R}^n$  is realized.
- 2 Put:  $X^{\mathbf{a}}(r) := B^{\mathbf{a}}_n(r) \cap W^{\mathbf{a}}_{L_n}$  for every  $\mathbf{a} \in L_n$ .
- **9** Do homothetic transformations of  $X^{\mathbf{a}}(r)$  with homothety center in  $\mathbf{a} \in L_n$ and such coefficient k(r) that the union  $\Omega(r)$  of obtained sets avoids unit distance.
- **(**) Maximize the density of  $\Omega(r)$  by choosing an appropriate radius r.

イロト イヨト イヨト イヨト

| n | the biggest | known upper               | known lower               | new lower           |
|---|-------------|---------------------------|---------------------------|---------------------|
|   | known den-  | bound $m_1(\mathbb{R}^n)$ | bound $m_1(\mathbb{R}^n)$ | bound               |
|   | sity of the | (Filho, Vallentin)        |                           | $m_1(\mathbb{R}^n)$ |
|   | packing     |                           |                           |                     |
| 2 | 0.90689     | 0.26841                   | 0.2293 (Croft)            | —                   |
| 3 | 0.74048     | 0.16560                   | 0.09256                   | 0.09877             |
| 4 | 0.61685     | 0.11293                   | 0.03855                   | 0.04413             |
| 5 | 0.46526     | 0.07528                   | 0.01453                   | 0.01833             |
| 6 | 0.37295     | 0.05157                   | 0.00582                   | 0.00806             |
| 7 | 0.29530     | 0.03612                   | 0.00230                   | 0.00352             |
| 8 | 0.25367     | 0.02579                   | 0.00099                   | 0.00165             |

メロト メロト メヨト メヨ

### Application to the problem on finding distance subgraphs of graphs in spaces of small dimension

#### Definition

A unit distance graph in the n-dimensional Euclidean space is an arbitrary graph G = (V, E), whose set of vertices V is a subset of  $\mathbb{R}^n$  and

$$E = \{ (\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \in V, ||\mathbf{x} - \mathbf{y}| = 1 \}.$$

### Application to the problem on finding distance subgraphs of graphs in spaces of small dimension

### Definition

A unit distance graph in the n-dimensional Euclidean space is an arbitrary graph G = (V, E), whose set of vertices V is a subset of  $\mathbb{R}^n$  and

$$E = \{ (\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \in V, |\mathbf{x} - \mathbf{y}| = 1 \}.$$

Relation with the chromatic number  $\chi(\mathbb{R}^n)$ :

$$\chi(\mathbb{R}^n) = \chi(G), \text{ where } G = (\mathbb{R}^n, E^n), E^n = \{(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, |\mathbf{x} - \mathbf{y}| = 1\}.$$

Moreover,  $\chi(\mathbb{R}^n) = \chi(H)$  for some finite distance graph H (according to Erdős – De Bruijn theorem).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

### Classical Ramsey number R(s,t): bounds

#### Definition

For given  $s, t \in \mathbb{N}$  the classical *Ramsey number* R(s,t) is the minimum natural m such that for any graph G = (V, E) on m vertices, either G contains an s-independent set or its complement  $\overline{G}$  to the complete graph  $K_m$  contains a t-independent set.

Image: A math a math

### Classical Ramsey number R(s,t): bounds

### Definition

For given  $s, t \in \mathbb{N}$  the classical *Ramsey number* R(s,t) is the minimum natural m such that for any graph G = (V, E) on m vertices, either G contains an s-independent set or its complement  $\overline{G}$  to the complete graph  $K_m$  contains a t-independent set.

• 
$$\left(\frac{1}{162} + o(1)\right) \frac{t^2}{\ln t} \le R(3,t) \le (1+o(1)) \frac{t^2}{\ln t}$$

(Kim, 1995; Ajtai et al., 1980)

•  $R(s,t) < {s+t-2 \choose t-1}$ 

(Erdős, Szekeres, 1935)

•  $R(s,s) > \frac{1}{e\sqrt{2}}(1+o(1))s2^{\frac{s}{2}}$ 

(Erdős, 1947, with random colorings)

•  $R(s,s) > \frac{\sqrt{2}}{e}(1+o(1)) s 2^{\frac{s}{2}}$ 

(application of Lovász Local Lemma)

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Distance Ramsey number  $R_{\text{NEH}}(s, t, n)$  is the minimum natural m such that for any graph G on m vertices, either G contains an induced s-vertex subgraph isomorphic to a distance graph in  $\mathbb{R}^n$  or its complement  $\overline{G}$  contains an induced t-vertex subgraph isomorphic to a distance graph in  $\mathbb{R}^n$ .

Image: A math a math

Distance Ramsey number  $R_{\text{NEH}}(s, t, n)$  is the minimum natural m such that for any graph G on m vertices, either G contains an induced s-vertex subgraph isomorphic to a distance graph in  $\mathbb{R}^n$  or its complement  $\overline{G}$  contains an induced t-vertex subgraph isomorphic to a distance graph in  $\mathbb{R}^n$ .

• It is obvious that  $R_{\text{NEH}}(s, s, n) \leq R(s, s)$  for every n.

Image: A math a math

Distance Ramsey number  $R_{\text{NEH}}(s,t,n)$  is the minimum natural m such that for any graph G on m vertices, either G contains an induced s-vertex subgraph isomorphic to a distance graph in  $\mathbb{R}^n$  or its complement  $\overline{G}$  contains an induced t-vertex subgraph isomorphic to a distance graph in  $\mathbb{R}^n$ .

- It is obvious that  $R_{\text{NEH}}(s, s, n) \leq R(s, s)$  for every n.
- $R_{\text{NEH}}(s, s, n) \leq (n+1) \binom{2s-2(n+1)}{s-(n+1)}$  for  $s \geq n+1$ .

Image: A match the second s

Distance Ramsey number  $R_{\text{NEH}}(s,t,n)$  is the minimum natural m such that for any graph G on m vertices, either G contains an induced s-vertex subgraph isomorphic to a distance graph in  $\mathbb{R}^n$  or its complement  $\overline{G}$  contains an induced t-vertex subgraph isomorphic to a distance graph in  $\mathbb{R}^n$ .

- It is obvious that  $R_{\text{NEH}}(s, s, n) \leq R(s, s)$  for every n.
- $R_{\text{NEH}}(s,s,n) \le (n+1) \binom{2s-2(n+1)}{s-(n+1)}$  for  $s \ge n+1$ .
- For  $n = O(\ln s)$ , there exists a constant  $\gamma > 0$  such that the inequality applies

$$R_{\text{NEH}}(s,s,n) \ge e^{\gamma \frac{s}{\ln^8 s}}.$$

• Given 
$$s, n \in \mathbb{N}$$
:  $R_{\text{NEH}}(s, s, n) > \frac{\sqrt{2}}{4e}(1 + o(1)) m 2^{\frac{m}{2}}$ ,  
where  $m = \left[\frac{s}{\chi(\mathbb{R}^n)}\right]$ 

#### Theorem 1

There exists a positive constant c, such that

$$R_{\text{NEH}}(s, s, 2) \ge 2^{\frac{s}{2} - c s^{\frac{1}{3}} \ln s}.$$

#### Theorem 2

There exists a positive constant c, such that

$$R_{\text{NEH}}(s,s,3) \ge 2^{\frac{s}{2}-c\,\beta(s)s^{\frac{1}{2}}\ln s},$$

where  $\beta(s) = 2^{\alpha^2(s)}$ , and  $\alpha(s)$  is the Ackermann function.

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

### Claim 1

There exists such constant  $c_2 > 0$  and such  $m_2 \in \mathbb{N}$ , that for all  $m > m_2$  and for every distant graph G = (V, E) in  $\mathbb{R}^2$  with m vertices  $|E| \leq c_2 m^{\frac{4}{3}}$ .

#### Claim 2

There exists such constant  $c_3 > 0$  and such  $m_3 \in \mathbb{N}$ , that for all  $m > m_3$  and for every distant graph G = (V, E) in  $\mathbb{R}^3$  with m vertices  $|E| \le c_3\beta(m)m^{\frac{3}{2}}$ , where  $\beta(m) = 2^{\alpha^2(m)}$ , and  $\alpha(m)$  is the Ackermann function.

イロト イヨト イヨト イヨト

### Claim 1

There exists such constant  $c_2 > 0$  and such  $m_2 \in \mathbb{N}$ , that for all  $m > m_2$  and for every distant graph G = (V, E) in  $\mathbb{R}^2$  with m vertices  $|E| \le c_2 m^{\frac{4}{3}}$ .

#### Claim 2

There exists such constant  $c_3 > 0$  and such  $m_3 \in \mathbb{N}$ , that for all  $m > m_3$  and for every distant graph G = (V, E) in  $\mathbb{R}^3$  with m vertices  $|E| \le c_3\beta(m)m^{\frac{3}{2}}$ , where  $\beta(m) = 2^{\alpha^2(m)}$ , and  $\alpha(m)$  is the Ackermann function.

### Claim 3

Every distance graph in  $\mathbb{R}^n$  with m vertices has  $2^n$  independent sets whose total cardinality is at least  $[c_n m]$ , where  $c_n$  is the corresponding constant from the main theorem.

<ロ> (日) (日) (日) (日) (日)

### Theorem

The following inequalities hold:

$$\begin{aligned} R_{\text{NEH}}(s,s,n) &\geq \frac{1}{e \cdot 2^{n+\frac{2^{n-1}-1}{2^n}}} (1+o(1))k2^{\frac{k}{n+1}}, & \text{where} \quad k=2^n \left[c_n s\right], \\ c_4 &= 0.04413, \quad c_7 = 0.00352, \\ c_5 &= 0.01833, \quad c_8 = 0.00165. \\ c_6 &= 0.00806, \end{aligned}$$

・ロト ・回ト ・ヨト ・ヨ

## Thank you!

メロト メロト メヨト メ