Counterexamples to Borsuk's conjecture on spheres of small radii

Kupavskiy A.B. Raigorodskiy A.M.

Department of Mechanics and Mathematics Moscow State University Moscow, Russia

28.06.2010 - 2.07.2010, Paris

Borsuk partition problem

• The following problem was posed by K. Borsuk in 1933: is it true that any set $\Omega \subset \mathbb{R}^d$ having diameter 1 can be divided into some parts $\Omega_1, \ldots, \Omega_{d+1}$ whose diameters are strictly smaller than 1?

$$\operatorname{diam} \Omega = \sup_{\mathbf{x}, \mathbf{y} \in \Omega} |\mathbf{x} - \mathbf{y}|$$

• By $f(\Omega)$ we denote the value

 $f(\Omega) = \min\{f : \ \Omega = \Omega_1 \cup \ldots \cup \Omega_f, \ \forall i \ \operatorname{diam} \Omega_i < \operatorname{diam} \Omega\}$

and $f(d) = \max_{\Omega \subset \mathbb{R}^d, ext{ diam } \Omega = 1} f(\Omega).$

• Borsuk's problem: is it true that always f(d) = d + 1?

A (1) < A (1) < A (1) < A (1) </p>

Borsuk partition problem

٠

• The following problem was posed by K. Borsuk in 1933: is it true that any set $\Omega \subset \mathbb{R}^d$ having diameter 1 can be divided into some parts $\Omega_1, \ldots, \Omega_{d+1}$ whose diameters are strictly smaller than 1?

$$\operatorname{diam} \Omega = \sup_{\mathbf{x}, \mathbf{y} \in \Omega} |\mathbf{x} - \mathbf{y}|$$

• By $f(\Omega)$ we denote the value

 $f(\Omega) = \min\{f : \ \Omega = \Omega_1 \cup \ldots \cup \Omega_f, \ \forall i \ \operatorname{diam} \Omega_i < \operatorname{diam} \Omega\}$

and $f(d) = \max_{\Omega \subset \mathbb{R}^d, ext{ diam } \Omega = 1} f(\Omega).$

• Borsuk's problem: is it true that always f(d) = d + 1?

A (1) < A (1) < A (1) < A (1) </p>

Borsuk partition problem

• The following problem was posed by K. Borsuk in 1933: is it true that any set $\Omega \subset \mathbb{R}^d$ having diameter 1 can be divided into some parts $\Omega_1, \ldots, \Omega_{d+1}$ whose diameters are strictly smaller than 1?

$$\operatorname{diam} \Omega = \sup_{\mathbf{x}, \mathbf{y} \in \Omega} |\mathbf{x} - \mathbf{y}|$$

• By $f(\Omega)$ we denote the value

 $f(\Omega) = \min\{f: \ \Omega = \Omega_1 \cup \ldots \cup \Omega_f, \ \forall i \ \operatorname{diam} \Omega_i < \operatorname{diam} \Omega\}$

and $f(d) = \max_{\Omega \subset \mathbb{R}^d, \text{ diam } \Omega = 1} f(\Omega).$

• Borsuk's problem: is it true that always f(d) = d + 1?

• • **=** • • **=**

Borsuk partition problem

• The following problem was posed by K. Borsuk in 1933: is it true that any set $\Omega \subset \mathbb{R}^d$ having diameter 1 can be divided into some parts $\Omega_1, \ldots, \Omega_{d+1}$ whose diameters are strictly smaller than 1?

$$\operatorname{diam} \Omega = \sup_{\mathbf{x}, \mathbf{y} \in \Omega} |\mathbf{x} - \mathbf{y}|$$

• By $f(\Omega)$ we denote the value

 $f(\Omega) = \min\{f: \ \Omega = \Omega_1 \cup \ldots \cup \Omega_f, \ \forall i \ \operatorname{diam} \Omega_i < \operatorname{diam} \Omega\}$

and f(d) = max_{Ω⊂ℝ^d, diam Ω=1} f(Ω).
Borsuk's problem: *is it true that always* f(d) = d + 1?

History and some known results

• 1946, H. Hadwiger, if Ω has smooth boundary, then $f(\Omega) \leq d+1$

- ② 1993, J. Kahn and G. Kalai disproved the conjecture. They constructed a *finite* set of points in a very high dimension *d* that could not be decomposed into *d* + 1 subsets of smaller diameter
- ③ Borsuk's conjecture is shown to be true for d ≤ 3 and false for d ≥ 298
- $(1.2255...+o(1))^{\sqrt{d}} \le f(d) \le (1.224...+o(1))^d.$

• • • • •

History and some known results

- 1946, H. Hadwiger, if Ω has smooth boundary, then $f(\Omega) \leq d+1$
- ② 1993, J. Kahn and G. Kalai disproved the conjecture. They constructed a *finite* set of points in a very high dimension d that could not be decomposed into d + 1 subsets of smaller diameter
- ③ Borsuk's conjecture is shown to be true for d ≤ 3 and false for d ≥ 298
- $(1.2255...+o(1))^{\sqrt{d}} \le f(d) \le (1.224...+o(1))^{d}.$

• • **=** • • **=**

History and some known results

- 1946, H. Hadwiger, if Ω has smooth boundary, then $f(\Omega) \leq d+1$
- 2 1993, J. Kahn and G. Kalai disproved the conjecture. They constructed a *finite* set of points in a very high dimension d that could not be decomposed into d + 1 subsets of smaller diameter
- Sorsuk's conjecture is shown to be true for d ≤ 3 and false for d ≥ 298
- $(1.2255...+o(1))^{\sqrt{d}} \le f(d) \le (1.224...+o(1))^{d}.$

• • • • • • •

History and some known results

- 1946, H. Hadwiger, if Ω has smooth boundary, then $f(\Omega) \leq d+1$
- 2 1993, J. Kahn and G. Kalai disproved the conjecture. They constructed a *finite* set of points in a very high dimension d that could not be decomposed into d + 1 subsets of smaller diameter
- Sorsuk's conjecture is shown to be true for d ≤ 3 and false for d ≥ 298

◎
$$(1.2255...+o(1))^{\sqrt{d}} \le f(d) \le (1.224...+o(1))^{d}.$$

Related problem and new theorem

- All known counterexamples to Borsuk's conjecture are always finite sets of points in \mathbb{R}^d lying on spheres whose radii are close to $\frac{1}{\sqrt{2}}$
- It is quite natural, since, By Jung's theorem, any set in \mathbb{R}^d having diameter 1 can be covered by a ball of radius $\sqrt{\frac{d}{2d+2}} \sim \frac{1}{\sqrt{2}}$
- Theorem 1. For any r > ¹/₂, there exists a d₀ = d₀(r) such that for every d ≥ d₀, one can find a set Ω ⊂ S^{d-1}_r which has diameter 1 and does not admit a partition into d + 1 parts of smaller diameter.

Related problem and new theorem

- All known counterexamples to Borsuk's conjecture are always finite sets of points in \mathbb{R}^d lying on spheres whose radii are close to $\frac{1}{\sqrt{2}}$
- It is quite natural, since, By Jung's theorem, any set in \mathbb{R}^d having diameter 1 can be covered by a ball of radius $\sqrt{\frac{d}{2d+2}} \sim \frac{1}{\sqrt{2}}$
- Theorem 1. For any r > ¹/₂, there exists a d₀ = d₀(r) such that for every d ≥ d₀, one can find a set Ω ⊂ S^{d-1}_r which has diameter 1 and does not admit a partition into d + 1 parts of smaller diameter.

Related problem and new theorem

- All known counterexamples to Borsuk's conjecture are always finite sets of points in \mathbb{R}^d lying on spheres whose radii are close to $\frac{1}{\sqrt{2}}$
- It is quite natural, since, By Jung's theorem, any set in \mathbb{R}^d having diameter 1 can be covered by a ball of radius $\sqrt{\frac{d}{2d+2}} \sim \frac{1}{\sqrt{2}}$
- Theorem 1. For any r > ¹/₂, there exists a d₀ = d₀(r) such that for every d ≥ d₀, one can find a set Ω ⊂ S^{d-1}_r which has diameter 1 and does not admit a partition into d + 1 parts of smaller diameter.

New results

• $f_r(d) = \max_{\Omega \subset S_r^{d-1}, \operatorname{diam} \Omega = 1} f(\Omega).$

• In these terms, Theorem 1 says that for any $r > \frac{1}{2}$, there exists a $d_0 = d_0(r)$ such that for every $d \ge d_0$, $f_r(d) > d + 1$

Theorem 2

For any $r > \frac{1}{2}$, there exist numbers $k = k(r) \in \mathbb{N}$, c = c(r) > 1and a function $\delta = \delta(d) = o(1)$ such that

$$f_r(d) \ge (c+\delta)^{2^k\sqrt{d}}.$$

□□ ► < □ ► < □</p>

New results

•
$$f_r(d) = \max_{\Omega \subset S_r^{d-1}, \operatorname{diam} \Omega = 1} f(\Omega).$$

• In these terms, Theorem 1 says that for any $r > \frac{1}{2}$, there exists a $d_0 = d_0(r)$ such that for every $d \ge d_0$, $f_r(d) > d + 1$

Theorem 2

For any $r > \frac{1}{2}$, there exist numbers $k = k(r) \in \mathbb{N}$, c = c(r) > 1and a function $\delta = \delta(d) = o(1)$ such that

$$f_r(d) \ge (c+\delta)^{2\sqrt[k]{d}}.$$

• • = • • = •

New results

•
$$f_r(d) = \max_{\Omega \subset S_r^{d-1}, \operatorname{diam} \Omega = 1} f(\Omega).$$

• In these terms, Theorem 1 says that for any $r > \frac{1}{2}$, there exists a $d_0 = d_0(r)$ such that for every $d \ge d_0$, $f_r(d) > d + 1$

Theorem 2.

For any $r > \frac{1}{2}$, there exist numbers $k = k(r) \in \mathbb{N}$, c = c(r) > 1and a function $\delta = \delta(d) = o(1)$ such that

$$f_r(d) \ge (c+\delta)^{2\sqrt[k]{d}}$$

- 3 b - 4 B

New results

Theorem 3.

Let $r = r(d) = \frac{1}{2} + \varphi(d)$, where $\varphi = o(1)$ and $\varphi(d) \ge c \frac{\ln \ln d}{\ln d}$ for all d and a large enough c > 0. Then, there exists a d_0 such that for $d \ge d_0$, $f_{r(d)}(d) > d + 1$.

Theorem 4

Let
$$r = r(d) = \frac{1}{2} + \varphi(d)$$
, where $\varphi = O(1/d)$. Then,
 $f_r(d) \le d + 1$.

伺 ト イヨト イヨト

New results

Theorem 3.

Let $r = r(d) = \frac{1}{2} + \varphi(d)$, where $\varphi = o(1)$ and $\varphi(d) \ge c \frac{\ln \ln d}{\ln d}$ for all d and a large enough c > 0. Then, there exists a d_0 such that for $d \ge d_0$, $f_{r(d)}(d) > d + 1$.

Theorem 4.

Let
$$r = r(d) = \frac{1}{2} + \varphi(d)$$
, where $\varphi = O(1/d)$. Then,
 $f_r(d) \le d+1$.

□□ ▶ < □ ▶ < □ ▶</p>

э

Linear-algebraic method

Consider the set

$$\Sigma = \{ \mathbf{x} = (x_1, \ldots, x_n) : \forall i \ x_i \in \{-1, 1\}, \ x_1 = 1, \ x_1 + \ldots + x_n = 0 \}.$$

- ② Let *a* be chosen in such a way that $p = \frac{a}{4} + \frac{n}{4}$ is a prime number and that *a* ∼ *a*₀*n*, *a*₀ ∈ (0, 1)
- **3** Lemma. If $Q \subset \Sigma$ is such that $|Q| > \sum_{i=0}^{p-1} C_n^i$, then there exist $\mathbf{x}, \mathbf{y} \in Q$ with $(\mathbf{x}, \mathbf{y}) = -a$.

→ < Ξ → <</p>

Linear-algebraic method

Consider the set

$$\Sigma = \{ \mathbf{x} = (x_1, \ldots, x_n) : \forall i \ x_i \in \{-1, 1\}, \ x_1 = 1, \ x_1 + \ldots + x_n = 0 \}.$$

2 Let a be chosen in such a way that $p = \frac{a}{4} + \frac{n}{4}$ is a prime number and that $a \sim a_0 n$, $a_0 \in (0, 1)$

3 Lemma. If $Q \subset \Sigma$ is such that $|Q| > \sum_{i=0}^{p-1} C_n^i$, then there exist $\mathbf{x}, \mathbf{y} \in Q$ with $(\mathbf{x}, \mathbf{y}) = -a$.

- A 🗐 🕨 - A

Linear-algebraic method

Consider the set

$$\Sigma = \{ \mathbf{x} = (x_1, \ldots, x_n) : \forall i \ x_i \in \{-1, 1\}, \ x_1 = 1, \ x_1 + \ldots + x_n = 0 \}.$$

- 2 Let a be chosen in such a way that $p = \frac{a}{4} + \frac{n}{4}$ is a prime number and that $a \sim a_0 n$, $a_0 \in (0, 1)$
- **3** Lemma. If $Q \subset \Sigma$ is such that $|Q| > \sum_{i=0}^{p-1} C_n^i$, then there exist $\mathbf{x}, \mathbf{y} \in Q$ with $(\mathbf{x}, \mathbf{y}) = -a$.

Dual mapping. Definition

Let A = {a₁,..., a_w} be the set of all possible 2k-character words over the alphabet X = {1,..., n}. Fix an x = (x₁,..., x_n) ∈ Σ. Consider

$$\mathbf{x}^{*2k} = \left(\mathbf{x}_{a_1}, \dots, \mathbf{x}_{a_w}, \sqrt{2ka^{2k-1}}x_1, \dots, \sqrt{2ka^{2k-1}}x_n\right),$$

where $\mathbf{x}_{a_j} = x_{i_1} \cdot \ldots \cdot x_{i_{2k}}$ if $a_j = i_1 \ldots i_{2k}$

Control The number of coordinates in any vector \mathbf{x}^{*2k} equals $d = n^{2k} + n$. Put

$$\Omega' = \left\{ \mathbf{x}^{*2k} : \ \mathbf{x} \in \Sigma \right\}.$$

• • = • • = •

Dual mapping. Definition

Let A = {a₁,..., a_w} be the set of all possible 2k-character words over the alphabet X = {1,..., n}. Fix an x = (x₁,..., x_n) ∈ Σ. Consider

$$\mathbf{x}^{*2k} = \left(\mathbf{x}_{a_1}, \dots, \mathbf{x}_{a_w}, \sqrt{2ka^{2k-1}}x_1, \dots, \sqrt{2ka^{2k-1}}x_n\right),$$

where $\mathbf{x}_{a_j} = x_{i_1} \cdot \ldots \cdot x_{i_{2k}}$ if $a_j = i_1 \ldots i_{2k}$

3 The number of coordinates in any vector \mathbf{x}^{*2k} equals $d = n^{2k} + n$. Put

$$\Omega' = \left\{ \mathbf{x}^{*2k} : \ \mathbf{x} \in \Sigma \right\}.$$

• • = • • = •

Dual mapping. Properties of Ω'

It is obvious that there is a bijection between Σ and Ω'
 (x*^{2k}, y*^{2k}) = (x, y)^{2k} + 2ka^{2k-1}(x, y).

Using the lemma, we obtain that

$$f(\Omega') \ge \frac{|\Omega'|}{\sum\limits_{i=0}^{p-1} C_n^i} = \frac{C_{n-1}^{\frac{n}{2}-1}}{\sum\limits_{i=0}^{p-1} C_n^i} = (c+\delta)^n = (c+\delta)^{\frac{2k}{\sqrt{d}}},$$

where c = const > 1, $\delta \rightarrow 0$

Dual mapping. Properties of Ω'

• It is obvious that there is a bijection between Σ and Ω' • $(\mathbf{x}^{*2k}, \mathbf{y}^{*2k}) = (\mathbf{x}, \mathbf{y})^{2k} + 2kz^{2k-1}(\mathbf{x}, \mathbf{y})$

$$\left(\mathbf{x}^{*2k},\mathbf{y}^{*2k}\right) = (\mathbf{x},\mathbf{y})^{2k} + 2ka^{2k-1}(\mathbf{x},\mathbf{y}).$$

- O The minimum of the form (x^{*2k}, y^{*2k}), which refers to the diameter of Ω', is attained on those and only those pairs of vectors x, y ∈ Σ whose scalar product equals -a
- Using the lemma, we obtain that

$$f(\Omega') \ge \frac{|\Omega'|}{\sum\limits_{i=0}^{p-1} C_n^i} = \frac{C_{n-1}^{\frac{n}{2}-1}}{\sum\limits_{i=0}^{p-1} C_n^i} = (c+\delta)^n = (c+\delta)^{\frac{2k}{\sqrt{d}}},$$

where c = const > 1, $\delta \rightarrow 0$

Dual mapping. Properties of Ω'

• It is obvious that there is a bijection between Σ and Ω' • $(x^{*2k}, x^{*2k}) = (x, y)^{2k} + 2ke^{2k-1}(x, y)$

$$\left(\mathbf{x}^{*2k},\mathbf{y}^{*2k}\right) = (\mathbf{x},\mathbf{y})^{2k} + 2ka^{2k-1}(\mathbf{x},\mathbf{y}).$$

• The minimum of the form $(\mathbf{x}^{*2k}, \mathbf{y}^{*2k})$, which refers to the diameter of Ω' , is attained on those and only those pairs of vectors $\mathbf{x}, \mathbf{y} \in \Sigma$ whose scalar product equals -a

Using the lemma, we obtain that

$$f(\Omega') \geq \frac{|\Omega'|}{\sum\limits_{i=0}^{p-1} C_n^i} = \frac{C_{n-1}^{\frac{n}{2}-1}}{\sum\limits_{i=0}^{p-1} C_n^i} = (c+\delta)^n = (c+\delta)^{\frac{2k}{\sqrt{d}}},$$

where c = const > 1, $\delta
ightarrow 0$

Dual mapping. Properties of Ω'

• It is obvious that there is a bijection between Σ and Ω' • $(*2k + 2k) = (-1)^{2k} + 2k - 1(-1)^{2k}$

$$\left(\mathbf{x}^{*2k},\mathbf{y}^{*2k}\right) = (\mathbf{x},\mathbf{y})^{2k} + 2ka^{2k-1}(\mathbf{x},\mathbf{y}).$$

- The minimum of the form $(\mathbf{x}^{*2k}, \mathbf{y}^{*2k})$, which refers to the diameter of Ω' , is attained on those and only those pairs of vectors $\mathbf{x}, \mathbf{y} \in \Sigma$ whose scalar product equals -a
- Using the lemma, we obtain that

$$f(\Omega') \geq \frac{|\Omega'|}{\sum\limits_{i=0}^{p-1} C_n^i} = \frac{C_{n-1}^{\frac{n}{2}-1}}{\sum\limits_{i=0}^{p-1} C_n^i} = (c+\delta)^n = (c+\delta)^{\frac{2k}{\sqrt{d}}},$$

where c = const > 1, $\delta
ightarrow 0$

The diameter of Ω'

1 It is clear that Ω' lies on the sphere $S_{
ho}^{d-1}$, where

$$\rho^2 = \left(\mathbf{x}^{*2k}, \mathbf{x}^{*2k}\right) = n^{2k} + 2ka^{2k-1}n.$$

3 diam² $\Omega' = 2n^{2k} + 4ka^{2k-1}n + (4k-2)a^{2k}$.

(a) Compressing Ω' so that a new set Ω'' has diameter 1, we see that $\Omega'' \subset S^{d-1}_{r'}$ with

$$(r')^{2} = \frac{n^{2k} + 2ka^{2k-1}n}{2n^{2k} + 4ka^{2k-1}n + (4k-2)a^{2k}}.$$

③ Remind, that a = a₀n, and a₀ ∈ (0,1) is arbitrary, so, when a₀ → 1, (r')² → ^{2k+1}/_{8k}
④ for arbitrary r > r' > √^{2k+1}/_{8k} we can embed S^{d'-1}_{r'} into S^d_r and receive a counterexample on the sphere of desired radius.

The diameter of Ω'

1 It is clear that Ω' lies on the sphere $S_{
ho}^{d-1}$, where

$$\rho^2 = \left(\mathbf{x}^{*2k}, \mathbf{x}^{*2k}\right) = n^{2k} + 2ka^{2k-1}n.$$

2 diam² $\Omega' = 2n^{2k} + 4ka^{2k-1}n + (4k-2)a^{2k}$.

Ompressing Ω' so that a new set Ω" has diameter 1, we see that Ω" ⊂ S^{d-1}_{r'} with

$$(r')^{2} = \frac{n^{2k} + 2ka^{2k-1}n}{2n^{2k} + 4ka^{2k-1}n + (4k-2)a^{2k}}.$$

Remind, that a = a₀n, and a₀ ∈ (0,1) is arbitrary, so, when a₀ → 1, (r')² → ^{2k+1}/_{8k}
 for arbitrary r > r' > √^{2k+1}/_{8k} we can embed S^{d'-1}_{r'} into S^d_r and receive a counterexample on the sphere of desired radius.

The diameter of Ω'

1 It is clear that Ω' lies on the sphere $S^{d-1}_{
ho}$, where

$$\rho^2 = \left(\mathbf{x}^{*2k}, \mathbf{x}^{*2k}\right) = n^{2k} + 2ka^{2k-1}n.$$

- **3** diam² $\Omega' = 2n^{2k} + 4ka^{2k-1}n + (4k-2)a^{2k}$.
- Ompressing Ω' so that a new set Ω" has diameter 1, we see that Ω" ⊂ $S_{r'}^{d-1}$ with

$$(r')^{2} = \frac{n^{2k} + 2ka^{2k-1}n}{2n^{2k} + 4ka^{2k-1}n + (4k-2)a^{2k}}.$$

Remind, that a = a₀n, and a₀ ∈ (0, 1) is arbitrary, so, when a₀ → 1, (r')² → ^{2k+1}/_{8k}
for arbitrary r > r' > √^{2k+1}/_{8k} we can embed S^{d'-1}_{r'} into S^d_r and receive a counterexample on the sphere of desired radius.

The diameter of Ω'

1 It is clear that Ω' lies on the sphere $S^{d-1}_{
ho}$, where

$$\rho^2 = \left(\mathbf{x}^{*2k}, \mathbf{x}^{*2k}\right) = n^{2k} + 2ka^{2k-1}n.$$

- **3** diam² $\Omega' = 2n^{2k} + 4ka^{2k-1}n + (4k-2)a^{2k}$.
- Ompressing Ω' so that a new set Ω" has diameter 1, we see that Ω" ⊂ $S_{r'}^{d-1}$ with

$$(r')^{2} = \frac{n^{2k} + 2ka^{2k-1}n}{2n^{2k} + 4ka^{2k-1}n + (4k-2)a^{2k}}.$$

- Remind, that $a = a_0 n$, and $a_0 \in (0, 1)$ is arbitrary, so, when $a_0 \rightarrow 1$, $(r')^2 \rightarrow \frac{2k+1}{8k}$
- **(3)** for arbitrary $r > r' > \sqrt{\frac{2k+1}{8k}}$ we can embed $S_{r'}^{d'-1}$ into S_r^d and receive a counterexample on the sphere of desired radius

The diameter of Ω'

1 It is clear that Ω' lies on the sphere $S^{d-1}_{
ho}$, where

$$\rho^2 = \left(\mathbf{x}^{*2k}, \mathbf{x}^{*2k}\right) = n^{2k} + 2ka^{2k-1}n.$$

- **3** diam² $\Omega' = 2n^{2k} + 4ka^{2k-1}n + (4k-2)a^{2k}$.
- Ompressing Ω' so that a new set Ω" has diameter 1, we see that Ω" ⊂ $S_{r'}^{d-1}$ with

$$(r')^{2} = \frac{n^{2k} + 2ka^{2k-1}n}{2n^{2k} + 4ka^{2k-1}n + (4k-2)a^{2k}}.$$

Q Remind, that a = a₀n, and a₀ ∈ (0, 1) is arbitrary, so, when a₀ → 1, (r')² → 2k+1/8k
Q for arbitrary r > r' > √(2k+1)/8k we can embed Sr' into Sr' and receive a counterexample on the sphere of desired radius

Remarks

- To obtain a counterexample on the sphere of the radius r we first choose k so, that $r > \sqrt{\frac{2k+1}{8k}}$, then we choose a_0 close enough to 1, then we choose a.
- Proof of the theorem 3 is based on the same ideas, but it is much more delicate because of the complicated optimization
- to prove theorem 4, we divide the sphere S_r^{d-1} into d+1 parts by inscribing into it a regular simplex

Remarks

- To obtain a counterexample on the sphere of the radius r we first choose k so, that $r > \sqrt{\frac{2k+1}{8k}}$, then we choose a_0 close enough to 1, then we choose a.
- Proof of the theorem 3 is based on the same ideas, but it is much more delicate because of the complicated optimization
- to prove theorem 4, we divide the sphere S_r^{d-1} into d+1 parts by inscribing into it a regular simplex

Remarks

- To obtain a counterexample on the sphere of the radius r we first choose k so, that $r > \sqrt{\frac{2k+1}{8k}}$, then we choose a_0 close enough to 1, then we choose a.
- Proof of the theorem 3 is based on the same ideas, but it is much more delicate because of the complicated optimization
- to prove theorem 4, we divide the sphere S_r^{d-1} into d+1 parts by inscribing into it a regular simplex

Remarks. Optimum

- If we fix 2k an even natural number, we can prove that $f_r(d) \ge (c + \delta)^{\frac{2k}{\sqrt{d}}}$ only for $r > \sqrt{\frac{2k+1}{8k}}$. In some sense it is the the best possible bound.
- Remind that after dual mapping the scalar product in Σ transformed into a polynomial from the scalar product in Ω':

$$(\mathbf{x},\mathbf{y}) \longrightarrow (\mathbf{x}^{*2k},\mathbf{y}^{*2k}) = (\mathbf{x},\mathbf{y})^{2k} + 2ka^{2k-1}(\mathbf{x},\mathbf{y}).$$

• We proved, that this mapping is optimal among all mappings *f* of a certain type:

$$(\mathbf{x}, \mathbf{y}) \longrightarrow (f(\mathbf{x}), f(\mathbf{y})) = Pol((\mathbf{x}, \mathbf{y})),$$

where Pol(t) is an arbitrary polynomial of degree 2k

• We also proved, that it is nonoptimal to use polynomials of even degree

Remarks. Optimum

- If we fix 2k an even natural number, we can prove that $f_r(d) \ge (c + \delta)^{\frac{2k}{\sqrt{d}}}$ only for $r > \sqrt{\frac{2k+1}{8k}}$. In some sense it is the the best possible bound.
- Remind that after dual mapping the scalar product in Σ transformed into a polynomial from the scalar product in Ω':

$$(\mathbf{x},\mathbf{y}) \longrightarrow \left(\mathbf{x}^{*2k},\mathbf{y}^{*2k}\right) = (\mathbf{x},\mathbf{y})^{2k} + 2ka^{2k-1}(\mathbf{x},\mathbf{y}).$$

• We proved, that this mapping is optimal among all mappings *f* of a certain type:

$$(\mathbf{x}, \mathbf{y}) \longrightarrow (f(\mathbf{x}), f(\mathbf{y})) = Pol((\mathbf{x}, \mathbf{y})),$$

where Pol(t) is an arbitrary polynomial of degree 2k

• We also proved, that it is nonoptimal to use polynomials of even degree

Remarks. Optimum

- If we fix 2k an even natural number, we can prove that $f_r(d) \ge (c + \delta)^{\frac{2k}{\sqrt{d}}}$ only for $r > \sqrt{\frac{2k+1}{8k}}$. In some sense it is the the best possible bound.
- Remind that after dual mapping the scalar product in Σ transformed into a polynomial from the scalar product in Ω':

$$(\mathbf{x},\mathbf{y}) \longrightarrow (\mathbf{x}^{*2k},\mathbf{y}^{*2k}) = (\mathbf{x},\mathbf{y})^{2k} + 2ka^{2k-1}(\mathbf{x},\mathbf{y}).$$

• We proved, that this mapping is optimal among all mappings f of a certain type:

$$(\mathbf{x}, \mathbf{y}) \longrightarrow (f(\mathbf{x}), f(\mathbf{y})) = Pol((\mathbf{x}, \mathbf{y})),$$

where Pol(t) is an arbitrary polynomial of degree 2k

• We also proved, that it is nonoptimal to use polynomials of even degree

Remarks. Optimum

- If we fix 2k an even natural number, we can prove that $f_r(d) \ge (c + \delta)^{\frac{2k}{\sqrt{d}}}$ only for $r > \sqrt{\frac{2k+1}{8k}}$. In some sense it is the the best possible bound.
- Remind that after dual mapping the scalar product in Σ transformed into a polynomial from the scalar product in Ω':

$$(\mathbf{x},\mathbf{y}) \longrightarrow (\mathbf{x}^{*2k},\mathbf{y}^{*2k}) = (\mathbf{x},\mathbf{y})^{2k} + 2ka^{2k-1}(\mathbf{x},\mathbf{y}).$$

 We proved, that this mapping is optimal among all mappings f of a certain type:

$$(\mathbf{x}, \mathbf{y}) \longrightarrow (f(\mathbf{x}), f(\mathbf{y})) = Pol((\mathbf{x}, \mathbf{y})),$$

where Pol(t) is an arbitrary polynomial of degree 2k

 We also proved, that it is nonoptimal to use polynomials of even degree

The end

Thank You

Kupavskiy A.B. Raigorodskiy A.M. Counterexamples to Borsuk's conjecture

æ

< ∃ > < ∃ >