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Borsuk partition problem

The following problem was posed by K. Borsuk in 1933:
is it true that any set Ω ⊂ Rd having diameter 1 can be
divided into some parts Ω1, . . . ,Ωd+1 whose diameters are
strictly smaller than 1?

diam Ω = sup
x,y∈Ω

|x− y|

By f (Ω) we denote the value
f (Ω) = min{f : Ω = Ω1 ∪ . . . ∪ Ωf , ∀ i diam Ωi < diam Ω}

and f (d) = maxΩ⊂Rd , diamΩ=1 f (Ω).

Borsuk's problem: is it true that always f (d) = d + 1?
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History and some known results

1 1946, H. Hadwiger, if Ω has smooth boundary, then
f (Ω) ≤ d + 1

2 1993, J. Kahn and G. Kalai disproved the conjecture. They
constructed a �nite set of points in a very high dimension d
that could not be decomposed into d + 1 subsets of smaller
diameter

3 Borsuk's conjecture is shown to be true for d ≤ 3 and false for
d ≥ 298

4 (1.2255... + o(1))
√

d ≤ f (d) ≤ (1.224... + o(1))d .
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Related problem and new theorem

All known counterexamples to Borsuk's conjecture are always
�nite sets of points in Rd lying on spheres whose radii are
close to 1√

2

It is quite natural, since, By Jung's theorem, any set in Rd

having diameter 1 can be covered by a ball of radius√
d

2d+2 ∼
1√
2

Theorem 1. For any r > 1
2 , there exists a d0 = d0(r) such

that for every d ≥ d0, one can �nd a set Ω ⊂ Sd−1
r which has

diameter 1 and does not admit a partition into d + 1 parts of
smaller diameter.
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New results

fr (d) = maxΩ⊂Sd−1
r , diamΩ=1 f (Ω).

In these terms, Theorem 1 says that for any r > 1
2 , there exists

a d0 = d0(r) such that for every d ≥ d0, fr (d) > d + 1

Theorem 2.
For any r > 1

2 , there exist numbers k = k(r) ∈ N, c = c(r) > 1
and a function δ = δ(d) = o(1) such that

fr (d) ≥ (c + δ)
2k√d .
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New results

Theorem 3.
Let r = r(d) = 1

2 + ϕ(d), where ϕ = o(1) and ϕ(d) ≥ c ln ln d
ln d for

all d and a large enough c > 0. Then, there exists a d0 such that
for d ≥ d0, fr(d)(d) > d + 1.

Theorem 4.
Let r = r(d) = 1

2 + ϕ(d), where ϕ = O(1/d). Then,
fr (d) ≤ d + 1.
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Linear-algebraic method

1 Consider the set
Σ = {x = (x1, . . . , xn) : ∀ i xi ∈ {−1, 1}, x1 = 1, x1+. . .+xn = 0}.

2 Let a be chosen in such a way that p = a
4 + n

4 is a prime
number and that a ∼ a0n, a0 ∈ (0, 1)

3 Lemma. If Q ⊂ Σ is such that |Q| >
p−1∑
i=0

C i
n, then there exist

x, y ∈ Q with (x, y) = −a.
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Dual mapping. De�nition

1 Let A = {a1, . . . , aw} be the set of all possible 2k-character
words over the alphabet X = {1, . . . , n}. Fix an
x = (x1, . . . , xn) ∈ Σ. Consider

x∗2k =
(
xa1 , . . . , xaw ,

√
2ka2k−1x1, . . . ,

√
2ka2k−1xn

)
,

where xaj = xi1 · . . . · xi2k
if aj = i1 . . . i2k

2 The number of coordinates in any vector x∗2k equals
d = n2k + n. Put

Ω′ =
{
x∗2k : x ∈ Σ

}
.
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Dual mapping. Properties of Ω′

1 It is obvious that there is a bijection between Σ and Ω′

2 (
x∗2k , y∗2k

)
= (x, y)2k + 2ka2k−1(x, y).

3 The minimum of the form (
x∗2k , y∗2k

), which refers to the
diameter of Ω′, is attained on those and only those pairs of
vectors x, y ∈ Σ whose scalar product equals −a

4 Using the lemma, we obtain that

f (Ω′) ≥ |Ω′|
p−1∑
i=0

C i
n

=
C

n
2
−1

n−1

p−1∑
i=0

C i
n

= (c + δ)n = (c + δ)
2k√d ,

where c = const > 1, δ → 0
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The diameter of Ω′

1 It is clear that Ω′ lies on the sphere Sd−1
ρ , where

ρ2 =
(
x∗2k , x∗2k

)
= n2k + 2ka2k−1n.

2 diam2 Ω′ = 2n2k + 4ka2k−1n + (4k − 2)a2k .
3 Compressing Ω′ so that a new set Ω′′ has diameter 1, we see

that Ω′′ ⊂ Sd−1
r ′ with

(r ′)2 =
n2k + 2ka2k−1n

2n2k + 4ka2k−1n + (4k − 2)a2k
.

4 Remind, that a = a0n, and a0 ∈ (0, 1) is arbitrary, so, when
a0 → 1, (r ′)2 → 2k+1

8k

5 for arbitrary r > r ′ >
√

2k+1
8k we can embed Sd ′−1

r ′ into Sd
r

and receive a counterexample on the sphere of desired radius
Kupavskiy A.B. Raigorodskiy A.M. Counterexamples to Borsuk's conjecture
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Remarks

To obtain a counterexample on the sphere of the radius r we
�rst choose k so, that r >

√
2k+1
8k , then we choose a0 close

enough to 1, then we choose a.
Proof of the theorem 3 is based on the same ideas, but it is
much more delicate because of the complicated optimization
to prove theorem 4, we divide the sphere Sd−1

r into d + 1
parts by inscribing into it a regular simplex
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Remarks. Optimum

If we �x 2k � an even natural number, we can prove that
fr (d) ≥ (c + δ)

2k√d only for r >
√

2k+1
8k . In some sense it is

the the best possible bound.
Remind that after dual mapping the scalar product in Σ
transformed into a polynomial from the scalar product in Ω′:

(x, y) −→
(
x∗2k , y∗2k

)
= (x, y)2k + 2ka2k−1(x, y).

We proved, that this mapping is optimal among all mappings f
of a certain type:

(x, y) −→ (f (x), f (y)) = Pol((x, y)),

where Pol(t) is an arbitrary polynomial of degree 2k

We also proved, that it is nonoptimal to use polynomials of
even degree
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The end

Thank You
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