Counterexamples to Borsuk's conjecture on spheres of small radii

Kupavskiy A.B. Raigorodskiy A.M.

Department of Mechanics and Mathematics
Moscow State University Moscow, Russia
28.06.2010-2.07.2010, Paris

Borsuk partition problem

- The following problem was posed by K. Borsuk in 1933: is it true that any set $\Omega \subset \mathbb{R}^{d}$ having diameter 1 can be divided into some parts $\Omega_{1}, \ldots, \Omega_{d+1}$ whose diameters are strictly smaller than 1 ?

- By $f(\Omega)$ we denote the value

and $f(d)=\max _{\Omega \subset \mathbb{R}^{d}, \operatorname{diam} \Omega=1} f(\Omega)$.
- Borsuk's problem: is it true that always $f(d)=d+1$?

Borsuk partition problem

- The following problem was posed by K. Borsuk in 1933: is it true that any set $\Omega \subset \mathbb{R}^{d}$ having diameter 1 can be divided into some parts $\Omega_{1}, \ldots, \Omega_{d+1}$ whose diameters are strictly smaller than 1 ?
-

$$
\operatorname{diam} \Omega=\sup _{\mathbf{x}, \mathbf{y} \in \Omega}|\mathbf{x}-\mathbf{y}|
$$

- By $f(\Omega)$ we denote the value
$f(\Omega)=\min \left\{f: \Omega=\Omega_{1} \cup \ldots \cup \Omega_{f}, \quad \forall i \quad \operatorname{diam} \Omega_{i}<\operatorname{diam} \Omega\right\}$
and $f\left(d^{\prime}\right)=\max _{\Omega \subset \mathbb{R}^{d}}, \operatorname{diam} \Omega=1 \quad f(\Omega)$.
- Borsuk's problem: is it true that always $f(d)=d+1$?

Borsuk partition problem

- The following problem was posed by K. Borsuk in 1933: is it true that any set $\Omega \subset \mathbb{R}^{d}$ having diameter 1 can be divided into some parts $\Omega_{1}, \ldots, \Omega_{d+1}$ whose diameters are strictly smaller than 1 ?
-

$$
\operatorname{diam} \Omega=\sup _{\mathbf{x}, \mathbf{y} \in \Omega}|\mathbf{x}-\mathbf{y}|
$$

- By $f(\Omega)$ we denote the value
$f(\Omega)=\min \left\{f: \Omega=\Omega_{1} \cup \ldots \cup \Omega_{f}, \quad \forall i \quad \operatorname{diam} \Omega_{i}<\operatorname{diam} \Omega\right\}$
and $f(d)=\max _{\Omega \subset \mathbb{R}^{d}, \operatorname{diam} \Omega=1} f(\Omega)$.
- Borsuk's problem: is it true that always $f(d)=d+1$?

Borsuk partition problem

- The following problem was posed by K. Borsuk in 1933: is it true that any set $\Omega \subset \mathbb{R}^{d}$ having diameter 1 can be divided into some parts $\Omega_{1}, \ldots, \Omega_{d+1}$ whose diameters are strictly smaller than 1 ?
-

$$
\operatorname{diam} \Omega=\sup _{\mathbf{x}, \mathbf{y} \in \Omega}|\mathbf{x}-\mathbf{y}|
$$

- By $f(\Omega)$ we denote the value
$f(\Omega)=\min \left\{f: \Omega=\Omega_{1} \cup \ldots \cup \Omega_{f}, \quad \forall i \quad \operatorname{diam} \Omega_{i}<\operatorname{diam} \Omega\right\}$
and $f(d)=\max _{\Omega \subset \mathbb{R}^{d}, \operatorname{diam} \Omega=1} f(\Omega)$.
- Borsuk's problem: is it true that always $f(d)=d+1$?

History and some known results

(1) 1946, H. Hadwiger, if Ω has smooth boundary, then $f(\Omega) \leq d+1$
(2) 1993, J. Kahn and G. Kalai disproved the conjecture. They constructed a finite set of points in a very high dimension d that could not be decomposed into $d+1$ subsets of smaller diameter
(0) Borsuk's conjecture is shown to be true for $d \leq 3$ and false for $d \geq 298$
© $(1.2255 \ldots+o(1))^{\sqrt{d}} \leq f(d) \leq(1.224 \ldots+o(1))^{d}$

History and some known results

(1) 1946, H. Hadwiger, if Ω has smooth boundary, then $f(\Omega) \leq d+1$
(2) 1993, J. Kahn and G. Kalai disproved the conjecture. They constructed a finite set of points in a very high dimension d that could not be decomposed into $d+1$ subsets of smaller diameter
(3) Borsuk's conjecture is shown to be true for $d \leq 3$ and false for $d \geq 298$
(a $(1.2255 \ldots+o(1))^{\sqrt{d}} \leq f(d) \leq(1.224 \ldots+o(1))^{d}$

History and some known results

(1) 1946, H. Hadwiger, if Ω has smooth boundary, then $f(\Omega) \leq d+1$
(2) 1993, J. Kahn and G. Kalai disproved the conjecture. They constructed a finite set of points in a very high dimension d that could not be decomposed into $d+1$ subsets of smaller diameter
(3) Borsuk's conjecture is shown to be true for $d \leq 3$ and false for $d \geq 298$

- (1.2255.

History and some known results

(1) 1946, H. Hadwiger, if Ω has smooth boundary, then $f(\Omega) \leq d+1$
(2) 1993, J. Kahn and G. Kalai disproved the conjecture. They constructed a finite set of points in a very high dimension d that could not be decomposed into $d+1$ subsets of smaller diameter
(3) Borsuk's conjecture is shown to be true for $d \leq 3$ and false for $d \geq 298$
(0) $(1.2255 \ldots+o(1))^{\sqrt{d}} \leq f(d) \leq(1.224 \ldots+o(1))^{d}$.

Related problem and new theorem

- All known counterexamples to Borsuk's conjecture are always finite sets of points in \mathbb{R}^{d} lying on spheres whose radii are close to $\frac{1}{\sqrt{2}}$
- It is quite natural, since, By Jung's theorem, any set in \mathbb{R}^{d} having diameter 1 can be covered by a ball of radius

- Theorem 1. For any $r>\frac{1}{2}$, there exists a $d_{0}=d_{0}(r)$ such that for every $d \geq d_{0}$, one can find a set $\Omega \subset S_{r}^{d-1}$ which has diameter 1 and does not admit a partition into $d+1$ parts of smaller diameter.

Related problem and new theorem

- All known counterexamples to Borsuk's conjecture are always finite sets of points in \mathbb{R}^{d} lying on spheres whose radii are close to $\frac{1}{\sqrt{2}}$
- It is quite natural, since, By Jung's theorem, any set in \mathbb{R}^{d} having diameter 1 can be covered by a ball of radius
$\sqrt{\frac{d}{2 d+2}} \sim \frac{1}{\sqrt{2}}$
Theorem 1. For any $r>\frac{1}{2}$, there exists a $d_{0}=d_{0}(r)$ such that for every $d \geq d_{0}$, one can find a set $\Omega \subset S_{r}^{d-1}$ which has diameter 1 and does not admit a partition into $d+1$ parts of smaller diameter.

Related problem and new theorem

- All known counterexamples to Borsuk's conjecture are always finite sets of points in \mathbb{R}^{d} lying on spheres whose radii are close to $\frac{1}{\sqrt{2}}$
- It is quite natural, since, By Jung's theorem, any set in \mathbb{R}^{d} having diameter 1 can be covered by a ball of radius
$\sqrt{\frac{d}{2 d+2}} \sim \frac{1}{\sqrt{2}}$
- Theorem 1. For any $r>\frac{1}{2}$, there exists a $d_{0}=d_{0}(r)$ such that for every $d \geq d_{0}$, one can find a set $\Omega \subset S_{r}^{d-1}$ which has diameter 1 and does not admit a partition into $d+1$ parts of smaller diameter.

New results

- $f_{r}(d)=\max _{\Omega \subset S_{r}^{d-1}, \operatorname{diam} \Omega=1} f(\Omega)$.
- In these terms, Theorem 1 says that for any $r>\frac{1}{2}$, there exists a $d_{0}=d_{0}(r)$ such that for every $d \geq d_{0}, f_{r}(d)>d+1$

Theorem 2.

For any $r>\frac{1}{2}$, there exist numbers $k=k(r) \in \mathbb{N}, c=c(r)>1$ and a function $\delta=\delta(d)=o(1)$ such that

New results

- $f_{r}(d)=\max _{\Omega \subset S_{r}^{d-1}, \operatorname{diam} \Omega=1} f(\Omega)$.
- In these terms, Theorem 1 says that for any $r>\frac{1}{2}$, there exists a $d_{0}=d_{0}(r)$ such that for every $d \geq d_{0}, f_{r}(d)>d+1$

New results

- $f_{r}(d)=\max _{\Omega \subset S_{r}^{d-1}, \operatorname{diam} \Omega=1} f(\Omega)$.
- In these terms, Theorem 1 says that for any $r>\frac{1}{2}$, there exists a $d_{0}=d_{0}(r)$ such that for every $d \geq d_{0}, f_{r}(d)>d+1$

Theorem 2.

For any $r>\frac{1}{2}$, there exist numbers $k=k(r) \in \mathbb{N}, c=c(r)>1$ and a function $\delta=\delta(d)=o(1)$ such that

$$
f_{r}(d) \geq(c+\delta) \sqrt[2 k]{d}
$$

New results

> Theorem 3.
> Let $r=r(d)=\frac{1}{2}+\varphi(d)$, where $\varphi=o(1)$ and $\varphi(d) \geq c \frac{\ln \ln d}{\ln d}$ for all d and a large enough $c>0$. Then, there exists a d_{0} such that for $d \geq d_{0}, f_{r(d)}(d)>d+1$.

Theorem 4.

New results

Theorem 3.

Let $r=r(d)=\frac{1}{2}+\varphi(d)$, where $\varphi=o(1)$ and $\varphi(d) \geq c \frac{\ln \ln d}{\ln d}$ for all d and a large enough $c>0$. Then, there exists a d_{0} such that for $d \geq d_{0}, f_{r(d)}(d)>d+1$.

Theorem 4.

Let $r=r(d)=\frac{1}{2}+\varphi(d)$, where $\varphi=O(1 / d)$. Then, $f_{r}(d) \leq d+1$.

Linear-algebraic method

(1) Consider the set
$\Sigma=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): \forall i x_{i} \in\{-1,1\}, x_{1}=1, x_{1}+\ldots+x_{n}=0\right\}$.
(2) Let a be chosen in such a way that $p=\frac{a}{4}+\frac{n}{4}$ is a prime number and that $a \sim a_{0} n, a_{0} \in(0,1)$
(3) Lemma. If $Q \subset \Sigma$ is such that $|Q|>\sum_{i=0}^{p-1} C_{n}^{i}$, then there exist $\mathbf{x}, \mathbf{y} \in Q$ with $(\mathbf{x}, \mathbf{y})=-a$.

Linear-algebraic method

(1) Consider the set

$$
\Sigma=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): \forall i x_{i} \in\{-1,1\}, x_{1}=1, x_{1}+\ldots+x_{n}=0\right\}
$$

(2) Let a be chosen in such a way that $p=\frac{a}{4}+\frac{n}{4}$ is a prime number and that $a \sim a_{0} n, a_{0} \in(0,1)$
(3) Lemma. If $Q \subset \Sigma$ is such that $|Q|>\sum_{i=0} C_{n}^{i}$, then there exist $\mathbf{x}, \mathbf{y} \in Q$ with $(\mathbf{x}, \mathbf{y})=-a$.

Linear-algebraic method

(1) Consider the set

$$
\Sigma=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): \forall i x_{i} \in\{-1,1\}, x_{1}=1, x_{1}+\ldots+x_{n}=0\right\}
$$

(2) Let a be chosen in such a way that $p=\frac{a}{4}+\frac{n}{4}$ is a prime number and that $a \sim a_{0} n, a_{0} \in(0,1)$
(3) Lemma. If $Q \subset \Sigma$ is such that $|Q|>\sum_{i=0}^{p-1} C_{n}^{i}$, then there exist $\mathbf{x}, \mathbf{y} \in Q$ with $(\mathbf{x}, \mathbf{y})=-a$.

Dual mapping. Definition

(1) Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{w}\right\}$ be the set of all possible $2 k$-character words over the alphabet $X=\{1, \ldots, n\}$. Fix an $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \Sigma$. Consider

$$
\mathbf{x}^{* 2 k}=\left(\mathbf{x}_{a_{1}}, \ldots, \mathbf{x}_{a_{w}}, \sqrt{2 k a^{2 k-1}} x_{1}, \ldots, \sqrt{2 k a^{2 k-1}} x_{n}\right),
$$

where $\mathbf{x}_{a_{j}}=x_{i_{1}} \cdot \ldots \cdot x_{i_{2 k}}$ if $a_{j}=i_{1} \ldots i_{2 k}$
(3) The number of coordinates in any vector $x^{* 2 k}$ equals

Dual mapping. Definition

(1) Let $\mathcal{A}=\left\{a_{1}, \ldots, a_{w}\right\}$ be the set of all possible $2 k$-character words over the alphabet $X=\{1, \ldots, n\}$. Fix an $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \Sigma$. Consider

$$
\mathbf{x}^{* 2 k}=\left(\mathbf{x}_{a_{1}}, \ldots, \mathbf{x}_{a_{w}}, \sqrt{2 k a^{2 k-1}} x_{1}, \ldots, \sqrt{2 k a^{2 k-1}} x_{n}\right),
$$

where $\mathbf{x}_{a_{j}}=x_{i_{1}} \cdot \ldots \cdot x_{i_{2 k}}$ if $a_{j}=i_{1} \ldots i_{2 k}$
(2) The number of coordinates in any vector $\mathbf{x}^{* 2 k}$ equals $d=n^{2 k}+n$. Put

$$
\Omega^{\prime}=\left\{\mathbf{x}^{* 2 k}: \mathbf{x} \in \Sigma\right\} .
$$

Dual mapping. Properties of Ω^{\prime}

(1) It is obvious that there is a bijection between Σ and Ω^{\prime}

(3) The minimum of the form $\left(\mathbf{x}^{* 2 k}, \mathbf{y}^{* 2 k}\right)$, which refers to the diameter of Ω^{\prime}, is attained on those and only those pairs of vectors $\mathrm{x}, \mathrm{y} \in \Sigma$ whose scalar product equals $-a$
(1) Using the lemma, we obtain that

where $c=$ const $>1, \delta \rightarrow 0$

Dual mapping. Properties of Ω^{\prime}

(1) It is obvious that there is a bijection between Σ and Ω^{\prime}
(2)

$$
\left(\mathbf{x}^{* 2 k}, \mathbf{y}^{* 2 k}\right)=(\mathbf{x}, \mathbf{y})^{2 k}+2 k a^{2 k-1}(\mathbf{x}, \mathbf{y})
$$

(3) The minimum of the form $\left(\mathbf{x}^{* 2 k}, \mathbf{y}^{* 2 k}\right)$, which refers to the diameter of Ω^{\prime}, is attained on those and only those pairs of vectors $\mathrm{x}, \mathrm{y} \in \Sigma$ whose scalar product equals $-a$
(1) Using the lemma, we obtain that

where $c=$ const $>1, \delta \rightarrow 0$

Dual mapping. Properties of Ω^{\prime}

(1) It is obvious that there is a bijection between Σ and Ω^{\prime}
(2)

$$
\left(\mathbf{x}^{* 2 k}, \mathbf{y}^{* 2 k}\right)=(\mathbf{x}, \mathbf{y})^{2 k}+2 k a^{2 k-1}(\mathbf{x}, \mathbf{y})
$$

(3) The minimum of the form $\left(\mathbf{x}^{* 2 k}, \mathbf{y}^{* 2 k}\right)$, which refers to the diameter of Ω^{\prime}, is attained on those and only those pairs of vectors $\mathbf{x}, \mathbf{y} \in \Sigma$ whose scalar product equals $-a$
© Using the lemma, we obtain that

where $c=$ const $>1, \delta \rightarrow 0$

Dual mapping. Properties of Ω^{\prime}

(1) It is obvious that there is a bijection between Σ and Ω^{\prime}
(2)

$$
\left(\mathbf{x}^{* 2 k}, \mathbf{y}^{* 2 k}\right)=(\mathbf{x}, \mathbf{y})^{2 k}+2 k a^{2 k-1}(\mathbf{x}, \mathbf{y})
$$

(3) The minimum of the form $\left(\mathbf{x}^{* 2 k}, \mathbf{y}^{* 2 k}\right)$, which refers to the diameter of Ω^{\prime}, is attained on those and only those pairs of vectors $\mathbf{x}, \mathbf{y} \in \Sigma$ whose scalar product equals $-a$
(1) Using the lemma, we obtain that

$$
f\left(\Omega^{\prime}\right) \geq \frac{\left|\Omega^{\prime}\right|}{\sum_{i=0}^{p-1} C_{n}^{i}}=\frac{C_{n-1}^{\frac{n}{2}-1}}{\sum_{i=0}^{p-1} C_{n}^{i}}=(c+\delta)^{n}=(c+\delta)^{\sqrt[2 k]{d}}
$$

where $c=$ const $>1, \delta \rightarrow 0$

The diameter of Ω^{\prime}

(1) It is clear that Ω^{\prime} lies on the sphere S_{ρ}^{d-1}, where

$$
\rho^{2}=\left(\mathbf{x}^{* 2 k}, \mathbf{x}^{* 2 k}\right)=n^{2 k}+2 k a^{2 k-1} n .
$$

(2) $\operatorname{diam}^{2} \Omega^{\prime}=2 n^{2 k}+4 k a^{2 k-1} n+(4 k-2) a^{2 k}$
(3) Compressing Ω^{\prime} so that a new set $\Omega^{\prime \prime}$ has diameter 1 , we see that $\Omega^{\prime \prime} \subset S_{r^{\prime}}^{d-1}$ with

(1) Remind, that $a=a_{0} n$, and $a_{0} \in(0,1)$ is arbitrary, so, when $a_{0} \rightarrow 1,\left(r^{\prime}\right)^{2} \rightarrow \frac{2 k+1}{8 k}$
(3) for arbitrary $r>r^{\prime}>\sqrt{\frac{2 k+1}{8 k}}$ we can embed $S_{r^{\prime}}^{d^{\prime}-1}$ into S_{r}^{d} and receive a counterexample on the sphere of desired radius

The diameter of Ω^{\prime}

(1) It is clear that Ω^{\prime} lies on the sphere S_{ρ}^{d-1}, where

$$
\rho^{2}=\left(\mathbf{x}^{* 2 k}, \mathbf{x}^{* 2 k}\right)=n^{2 k}+2 k a^{2 k-1} n
$$

(2) $\operatorname{diam}^{2} \Omega^{\prime}=2 n^{2 k}+4 k a^{2 k-1} n+(4 k-2) a^{2 k}$.
(3) Compressing Ω^{\prime} so that a new set $\Omega^{\prime \prime}$ has diameter 1 , we see that $\Omega^{\prime \prime} \subset S_{r^{\prime}}^{d-1}$ with

(1) Remind, that $a=a_{0} n$, and $a_{0} \in(0,1)$ is arbitrary, so, when $a_{0} \rightarrow 1,\left(r^{\prime}\right)^{2} \rightarrow \frac{2 k+1}{8 k}$
(3) for arbitrary $r>r^{\prime}>\sqrt{\frac{2 k+1}{8 k}}$ we can embed $S_{r^{\prime}}^{d^{\prime}-1}$ into S_{r}^{d}

The diameter of Ω^{\prime}

(1) It is clear that Ω^{\prime} lies on the sphere S_{ρ}^{d-1}, where

$$
\rho^{2}=\left(\mathbf{x}^{* 2 k}, \mathbf{x}^{* 2 k}\right)=n^{2 k}+2 k a^{2 k-1} n .
$$

(2) $\operatorname{diam}^{2} \Omega^{\prime}=2 n^{2 k}+4 k a^{2 k-1} n+(4 k-2) a^{2 k}$.
(3) Compressing Ω^{\prime} so that a new set $\Omega^{\prime \prime}$ has diameter 1 , we see that $\Omega^{\prime \prime} \subset S_{r^{\prime}}^{d-1}$ with

$$
\left(r^{\prime}\right)^{2}=\frac{n^{2 k}+2 k a^{2 k-1} n}{2 n^{2 k}+4 k a^{2 k-1} n+(4 k-2) a^{2 k}} .
$$

(1) Remind, that $a=a_{0} n$, and $a_{0} \in(0,1)$ is arbitrary, so, when
(3) for arbitrary $r>r^{\prime}>\sqrt{\frac{2 k+1}{8 k}}$ we can embed $S_{r^{\prime}}^{d^{\prime}-1}$ into S_{r}^{d}
and receive a counterexample on the sphere of desired radius

The diameter of Ω^{\prime}

(1) It is clear that Ω^{\prime} lies on the sphere S_{ρ}^{d-1}, where

$$
\rho^{2}=\left(\mathbf{x}^{* 2 k}, \mathbf{x}^{* 2 k}\right)=n^{2 k}+2 k a^{2 k-1} n .
$$

(2) $\operatorname{diam}^{2} \Omega^{\prime}=2 n^{2 k}+4 k a^{2 k-1} n+(4 k-2) a^{2 k}$.
(3) Compressing Ω^{\prime} so that a new set $\Omega^{\prime \prime}$ has diameter 1 , we see that $\Omega^{\prime \prime} \subset S_{r^{\prime}}^{d-1}$ with

$$
\left(r^{\prime}\right)^{2}=\frac{n^{2 k}+2 k a^{2 k-1} n}{2 n^{2 k}+4 k a^{2 k-1} n+(4 k-2) a^{2 k}} .
$$

(1) Remind, that $a=a_{0} n$, and $a_{0} \in(0,1)$ is arbitrary, so, when $a_{0} \rightarrow 1,\left(r^{\prime}\right)^{2} \rightarrow \frac{2 k+1}{8 k}$
(5) for arbitrary $r>r^{\prime}>\sqrt{\frac{2 k+1}{8 k}}$ we can embed $S_{r^{\prime}}^{d^{\prime}-1}$ into S_{r}^{d}
and receive a counterexample on the sphere of desired radius

The diameter of Ω^{\prime}

(1) It is clear that Ω^{\prime} lies on the sphere S_{ρ}^{d-1}, where

$$
\rho^{2}=\left(\mathbf{x}^{* 2 k}, \mathbf{x}^{* 2 k}\right)=n^{2 k}+2 k a^{2 k-1} n .
$$

(2) $\operatorname{diam}^{2} \Omega^{\prime}=2 n^{2 k}+4 k a^{2 k-1} n+(4 k-2) a^{2 k}$.
(3) Compressing Ω^{\prime} so that a new set $\Omega^{\prime \prime}$ has diameter 1 , we see that $\Omega^{\prime \prime} \subset S_{r^{\prime}}^{d-1}$ with

$$
\left(r^{\prime}\right)^{2}=\frac{n^{2 k}+2 k a^{2 k-1} n}{2 n^{2 k}+4 k a^{2 k-1} n+(4 k-2) a^{2 k}} .
$$

(9) Remind, that $a=a_{0} n$, and $a_{0} \in(0,1)$ is arbitrary, so, when $a_{0} \rightarrow 1,\left(r^{\prime}\right)^{2} \rightarrow \frac{2 k+1}{8 k}$
(3) for arbitrary $r>r^{\prime}>\sqrt{\frac{2 k+1}{8 k}}$ we can embed $S_{r^{\prime}}^{d^{\prime}-1}$ into S_{r}^{d} and receive a counterexample on the sphere of desired radius

Remarks

- To obtain a counterexample on the sphere of the radius r we first choose k so, that $r>\sqrt{\frac{2 k+1}{8 k}}$, then we choose a_{0} close enough to 1 , then we choose a.
- Proof of the theorem 3 is based on the same ideas, but it is much more delicate because of the complicated optimization
- to prove theorem 4 , we divide the sphere S_{r}^{d-1} into $d+1$ parts by inscribing into it a regular simplex

Remarks

- To obtain a counterexample on the sphere of the radius r we first choose k so, that $r>\sqrt{\frac{2 k+1}{8 k}}$, then we choose a_{0} close enough to 1 , then we choose a.
- Proof of the theorem 3 is based on the same ideas, but it is much more delicate because of the complicated optimization
- to prove theorem 4, we divide the sphere S_{r}^{d-1} into $d+1$ parts by inscribing into it a regular simplex

Remarks

- To obtain a counterexample on the sphere of the radius r we first choose k so, that $r>\sqrt{\frac{2 k+1}{8 k}}$, then we choose a_{0} close enough to 1 , then we choose a.
- Proof of the theorem 3 is based on the same ideas, but it is much more delicate because of the complicated optimization
- to prove theorem 4, we divide the sphere S_{r}^{d-1} into $d+1$ parts by inscribing into it a regular simplex

Remarks. Optimum

- If we fix $2 k-$ an even natural number, we can prove that $f_{r}(d) \geq(c+\delta) \sqrt[2 k]{d}$ only for $r>\sqrt{\frac{2 k+1}{8 k}}$. In some sense it is the the best possible bound.
- Remind that after dual mapping the scalar product in Σ transformed into a polynomial from the scalar product in Ω^{\prime}

- We proved, that this mapping is optimal among all mappings f of a certain type:

$$
(\mathbf{x}, \mathbf{y}) \longrightarrow(f(\mathbf{x}), f(\mathbf{y}))=\operatorname{Pol}((\mathbf{x}, \mathbf{y})),
$$

where $\operatorname{Pol}(t)$ is an arbitrary polynomial of degree $2 k$

- We also proved, that it is nonoptimal to use polynomials of even degree

Remarks. Optimum

- If we fix $2 k-$ an even natural number, we can prove that $f_{r}(d) \geq(c+\delta) \sqrt[2 k]{d}$ only for $r>\sqrt{\frac{2 k+1}{8 k}}$. In some sense it is the the best possible bound.
- Remind that after dual mapping the scalar product in Σ transformed into a polynomial from the scalar product in Ω^{\prime} :

$$
(\mathbf{x}, \mathbf{y}) \longrightarrow\left(\mathbf{x}^{* 2 k}, \mathbf{y}^{* 2 k}\right)=(\mathbf{x}, \mathbf{y})^{2 k}+2 k a^{2 k-1}(\mathbf{x}, \mathbf{y})
$$

- We proved, that this mapping is optimal among all mappings f of a certain type:

where $\mathrm{Pol}(t)$ is an arbitrary polynomial of degree $2 k$
- We also proved, that it is nonoptimal to use polynomials of even degree

Remarks. Optimum

- If we fix $2 k-$ an even natural number, we can prove that $f_{r}(d) \geq(c+\delta) \sqrt[2 k]{d}$ only for $r>\sqrt{\frac{2 k+1}{8 k}}$. In some sense it is the the best possible bound.
- Remind that after dual mapping the scalar product in Σ transformed into a polynomial from the scalar product in Ω^{\prime} :

$$
(\mathbf{x}, \mathbf{y}) \longrightarrow\left(\mathbf{x}^{* 2 k}, \mathbf{y}^{* 2 k}\right)=(\mathbf{x}, \mathbf{y})^{2 k}+2 k a^{2 k-1}(\mathbf{x}, \mathbf{y})
$$

- We proved, that this mapping is optimal among all mappings f of a certain type:

$$
(\mathbf{x}, \mathbf{y}) \longrightarrow(f(\mathbf{x}), f(\mathbf{y}))=\operatorname{Pol}((\mathbf{x}, \mathbf{y}))
$$

where $\operatorname{Pol}(t)$ is an arbitrary polynomial of degree $2 k$

> We also proved, that it is nonoptimal to use polynomials of
even degree

Remarks. Optimum

- If we fix $2 k-$ an even natural number, we can prove that $f_{r}(d) \geq(c+\delta) \sqrt[2 k]{d}$ only for $r>\sqrt{\frac{2 k+1}{8 k}}$. In some sense it is the the best possible bound.
- Remind that after dual mapping the scalar product in Σ transformed into a polynomial from the scalar product in Ω^{\prime} :

$$
(\mathbf{x}, \mathbf{y}) \longrightarrow\left(\mathbf{x}^{* 2 k}, \mathbf{y}^{* 2 k}\right)=(\mathbf{x}, \mathbf{y})^{2 k}+2 k a^{2 k-1}(\mathbf{x}, \mathbf{y})
$$

- We proved, that this mapping is optimal among all mappings f of a certain type:

$$
(\mathbf{x}, \mathbf{y}) \longrightarrow(f(\mathbf{x}), f(\mathbf{y}))=\operatorname{Pol}((\mathbf{x}, \mathbf{y}))
$$

where $\operatorname{Pol}(t)$ is an arbitrary polynomial of degree $2 k$

- We also proved, that it is nonoptimal to use polynomials of even degree

The end

Thank You

