The chromatic number of a normed space

Kupavskiy A.B.

Department of Mechanics and Mathematics Moscow State University Moscow, Russia

16.08.2010 - 20.08.2010, Moscow

• The following problem was posed by Nelson and Hadwiger in 1950:

what is the minimum number of colors which are needed to paint all the points in \mathbb{R}^d so that any two points at distance 1 apart receive different colors

• Formally,

 $\chi(\mathbb{R}^d) = \min\{m \in \mathbb{N} : \mathbb{R}^d = H_1 \cup \ldots \cup H_m : \forall i, \forall x, y \in H_i | x - y | \neq 1\}$

• The following problem was posed by Nelson and Hadwiger in 1950:

what is the minimum number of colors which are needed to paint all the points in \mathbb{R}^d so that any two points at distance 1 apart receive different colors

• Formally,

$$\chi(\mathbb{R}^d) = \min\{m \in \mathbb{N} : \mathbb{R}^d = H_1 \cup \ldots \cup H_m : \forall i, \forall x, y \in H_i | x - y | \neq 1\}$$

- 1951, Erdős, de Bruijn: If we accept the axiom of choice, then the chromatic number of the space is equal to the chromatic number of some finite graph, lying in ℝ^d, with edges that connect vertices at unit distance apart
- $4 \leq \chi(\mathbb{R}^2) \leq 7$
- 0 2001, Nechushtan 6 $\leq \chi(\mathbb{R}^3) \leq 15$
- (a) there are lower estimates for the chromatic number of spaces \mathbb{R}^d and \mathbb{Q}^n for $d \leq 24$ and $n \leq 7$

- 1951, Erdős, de Bruijn: If we accept the axiom of choice, then the chromatic number of the space is equal to the chromatic number of some finite graph, lying in ℝ^d, with edges that connect vertices at unit distance apart
- $4 \leq \chi(\mathbb{R}^2) \leq 7$
- \bullet 2001, Nechushtan $6 \leq \chi(\mathbb{R}^3) \leq 15$
- (a) there are lower estimates for the chromatic number of spaces \mathbb{R}^d and \mathbb{Q}^n for $d \leq 24$ and $n \leq 7$

- 1951, Erdős, de Bruijn: If we accept the axiom of choice, then the chromatic number of the space is equal to the chromatic number of some finite graph, lying in R^d, with edges that connect vertices at unit distance apart
- $4 \leq \chi(\mathbb{R}^2) \leq 7$
- 0 2001, Nechushtan $6 \leq \chi(\mathbb{R}^3) \leq 15$
- (a) there are lower estimates for the chromatic number of spaces \mathbb{R}^d and \mathbb{Q}^n for $d \leq 24$ and $n \leq 7$

• 1971, Raiskii, $\chi(\mathbb{R}^d) \geq d+2$

- 1972, Larman, Rogers, $\chi(\mathbb{R}^d) \geq c_2 rac{d^2}{(\log d)^3}$
- 1978, Larman, $\chi(\mathbb{R}^d) \ge c_2 d^3$
- 1980, Frankl, $orall t \; \exists d(t): \; orall d > d(t) \; \chi(\mathbb{R}^d) \geq d^t$
- 1981, Frankl, Wilson $\chi(\mathbb{R}^d) \geq (1,207..+o(1))^d$
- 2000, Raigorodskii, $\chi(\mathbb{R}^d) \geq (1, 239..+o(1))^d$

- 1971, Raiskii, $\chi(\mathbb{R}^d) \geq d+2$
- 1972, Larman, Rogers, $\chi(\mathbb{R}^d) \ge c_2 \frac{d^2}{(\log d)^3}$
- 1978, Larman, $\chi(\mathbb{R}^d) \ge c_2 d^3$
- 1980, Frankl, $orall t \ \exists d(t): \ orall d > d(t) \ \chi(\mathbb{R}^d) \geq d^t$
- 1981, Frankl, Wilson $\chi(\mathbb{R}^d) \geq (1,207..+o(1))^d$
- 2000, Raigorodskii, $\chi(\mathbb{R}^d) \geq (1, 239.. + o(1))^d$

- 1971, Raiskii, $\chi(\mathbb{R}^d) \geq d+2$
- 1972, Larman, Rogers, $\chi(\mathbb{R}^d) \geq c_2 rac{d^2}{(\log d)^3}$

• 1978, Larman,
$$\chi(\mathbb{R}^d) \geq c_2 d^3$$

- 1980, Frankl, $orall t \exists d(t): \ orall d > d(t) \ \chi(\mathbb{R}^d) \geq d^t$
- 1981, Frankl, Wilson $\chi(\mathbb{R}^d) \ge (1, 207.. + o(1))^d$
- 2000, Raigorodskii, $\chi(\mathbb{R}^d) \geq (1, 239.. + o(1))^d$

- 1971, Raiskii, $\chi(\mathbb{R}^d) \geq d+2$
- 1972, Larman, Rogers, $\chi(\mathbb{R}^d) \geq c_2 rac{d^2}{(\log d)^3}$

• 1978, Larman,
$$\chi(\mathbb{R}^d) \geq c_2 d^3$$

- 1980, Frankl, $orall t \exists d(t): \ orall d > d(t) \ \chi(\mathbb{R}^d) \geq d^t$
- 1981, Frankl, Wilson $\chi(\mathbb{R}^d) \geq (1, 207..+o(1))^d$
- 2000, Raigorodskii, $\chi(\mathbb{R}^d) \geq (1, 239.. + o(1))^d$

- 1971, Raiskii, $\chi(\mathbb{R}^d) \geq d+2$
- 1972, Larman, Rogers, $\chi(\mathbb{R}^d) \geq c_2 rac{d^2}{(\log d)^3}$

• 1978, Larman,
$$\chi(\mathbb{R}^d) \geq c_2 d^3$$

- 1980, Frankl, $orall t \ \exists d(t): \ orall d > d(t) \ \chi(\mathbb{R}^d) \geq d^t$
- 1981, Frankl, Wilson $\chi(\mathbb{R}^d) \geq (1, 207..+o(1))^d$

• 2000, Raigorodskii, $\chi(\mathbb{R}^d) \ge (1, 239.. + o(1))^d$

- 1971, Raiskii, $\chi(\mathbb{R}^d) \geq d+2$
- 1972, Larman, Rogers, $\chi(\mathbb{R}^d) \geq c_2 rac{d^2}{(\log d)^3}$

• 1978, Larman,
$$\chi(\mathbb{R}^d) \geq c_2 d^3$$

- 1980, Frankl, $orall t \ \exists d(t): \ orall d > d(t) \ \chi(\mathbb{R}^d) \geq d^t$
- 1981, Frankl, Wilson $\chi(\mathbb{R}^d) \geq (1, 207..+o(1))^d$
- 2000, Raigorodskii, $\chi(\mathbb{R}^d) \geq (1,239..+o(1))^d$

Generalizations and related problems

- In the definition of the chromatic number instead of \mathbb{R}^n with Euclidean metric we can consider an arbitrary space with arbitrary metric. There are a lot of results about the chromatic number of \mathbb{Q}^d and S^d with Euclidean metric, and about the chromatic number of \mathbb{R}^d_p .
- We can forbid any set of distances instead of the unit distance. There are works where authors considered maximum of the chromatic number of the space with *k* forbidden distances among all *k*-element sets.
- We also can consider colorings of the space where each color is of certain type: for example, each color is measurable or each color is a disjoint union of polyhedra. We have $5 \le \chi(\mathbb{R}^2) \le 7$ if each color is measurable.

Generalizations and related problems

- In the definition of the chromatic number instead of \mathbb{R}^n with Euclidean metric we can consider an arbitrary space with arbitrary metric. There are a lot of results about the chromatic number of \mathbb{Q}^d and S^d with Euclidean metric, and about the chromatic number of \mathbb{R}^d_p .
- We can forbid any set of distances instead of the unit distance. There are works where authors considered maximum of the chromatic number of the space with k forbidden distances among all k-element sets.
- We also can consider colorings of the space where each color is of certain type: for example, each color is measurable or each color is a disjoint union of polyhedra. We have $5 \le \chi(\mathbb{R}^2) \le 7$ if each color is measurable.

Generalizations and related problems

- In the definition of the chromatic number instead of \mathbb{R}^n with Euclidean metric we can consider an arbitrary space with arbitrary metric. There are a lot of results about the chromatic number of \mathbb{Q}^d and S^d with Euclidean metric, and about the chromatic number of \mathbb{R}^d_p .
- We can forbid any set of distances instead of the unit distance. There are works where authors considered maximum of the chromatic number of the space with k forbidden distances among all k-element sets.
- We also can consider colorings of the space where each color is of certain type: for example, each color is measurable or each color is a disjoint union of polyhedra. We have $5 \le \chi(\mathbb{R}^2) \le 7$ if each color is measurable.

Asymptotical bounds

- We denote by χ(ℝ^d_K, A) the chromatic number of the space with norm induced by convex centrally symmetric bounded body K and with set A of forbidden distances. By χ(ℝ^d_p) we denote the chromatic number of the space with I_p-norm and with one forbidden distance.
- **2** For p = 2 (classical case) we have $(1, 237..+o(1))^d \le \chi(\mathbb{R}^d_2) \le (3+o(1))^d$. The upper bound is due to Larman, Rogers, 1972.
- We have $\chi(\mathbb{R}_p^d) \ge (1, 207... + o(1))^d$, $\chi(\mathbb{R}_\infty^d) = 2^d$ and $\chi(\mathbb{R}_1^d) \ge (1, 369... + o(1))^d$. Last result is due to Raigorodskii.

Asymptotical bounds

- We denote by χ(ℝ^d_K, A) the chromatic number of the space with norm induced by convex centrally symmetric bounded body K and with set A of forbidden distances. By χ(ℝ^d_p) we denote the chromatic number of the space with I_p-norm and with one forbidden distance.
- For p = 2 (classical case) we have $(1, 237..+o(1))^d \le \chi(\mathbb{R}_2^d) \le (3+o(1))^d$. The upper bound is due to Larman, Rogers, 1972.
- We have $\chi(\mathbb{R}_p^d) \ge (1, 207... + o(1))^d$, $\chi(\mathbb{R}_\infty^d) = 2^d$ and $\chi(\mathbb{R}_1^d) \ge (1, 369... + o(1))^d$. Last result is due to Raigorodskii.

Asymptotical bounds

- We denote by χ(ℝ^d_K, A) the chromatic number of the space with norm induced by convex centrally symmetric bounded body K and with set A of forbidden distances. By χ(ℝ^d_p) we denote the chromatic number of the space with I_p-norm and with one forbidden distance.
- For p = 2 (classical case) we have $(1,237..+o(1))^d \le \chi(\mathbb{R}_2^d) \le (3+o(1))^d$. The upper bound is due to Larman, Rogers, 1972.
- We have $\chi(\mathbb{R}^d_p) \ge (1, 207... + o(1))^d$, $\chi(\mathbb{R}^d_\infty) = 2^d$ and $\chi(\mathbb{R}^d_1) \ge (1, 369... + o(1))^d$. Last result is due to Raigorodskii.

 Furedi and Kang in several works established different upper estimates on the χ(ℝ^d_p). The best one is χ(ℝ^d_K) ≤ cd(ln d)5^d (2008)

2 Theorem 1. Let \mathbb{R}^d_K be a normed space. Then

$$\chi(\mathbb{R}^d_{\mathcal{K}}) \leq \frac{\left(\ln d + \ln \ln d + \ln 4 + 1 + o(1)\right)}{\ln \sqrt{2}} \cdot 4^d.$$

- Furedi and Kang in several works established different upper estimates on the χ(ℝ^d_p). The best one is χ(ℝ^d_K) ≤ cd(ln d)5^d (2008)
- **2** Theorem 1. Let \mathbb{R}^d_K be a normed space. Then

$$\chi(\mathbb{R}^d_{\mathcal{K}}) \leq \frac{(\ln d + \ln \ln d + \ln 4 + 1 + o(1))}{\ln \sqrt{2}} \cdot 4^d.$$

 We can improve this theorem even more in the case of the *I_p*-space R^d_p.
 Theorem 2. Let R^d_p be a normed space. Then

 $\chi(\mathbb{R}_p^d) \leq 2^{(1+c_p+\delta_d)d},$

where $\delta_d \to 0$ when $d \to \infty$, and $c_p < 1$ when p > 2 and $c_p \to 0$ when $p \to \infty$. Indeed, for $p(d) > \omega(d)d \ln \ln d$, where $\omega(d)$ is a function, which tends to infinity arbitrary slow, we can obtain the bound $\chi(\mathbb{R}^d_{p(d)}) \leq (\ln d + \ln \ln d + \ln 2 + 1 + o(1))d2^d = (2 + o(1))^d$. Remind, that $\chi(\mathbb{R}^d_{\infty}) = 2^d$. We can improve this theorem even more in the case of the *I_p*-space R^d_p.
 Theorem 2. Let R^d_p be a normed space. Then

 $\chi(\mathbb{R}_p^d) \leq 2^{(1+c_p+\delta_d)d},$

where $\delta_d \to 0$ when $d \to \infty$, and $c_p < 1$ when p > 2 and $c_p \to 0$ when $p \to \infty$. Indeed, for $p(d) > \omega(d)d \ln \ln d$, where $\omega(d)$ is a function, which tends to infinity arbitrary slow, we can obtain the bound $\chi(\mathbb{R}^d_{p(d)}) \leq (\ln d + \ln \ln d + \ln 2 + 1 + o(1))d2^d = (2 + o(1))^d$.

2 Remind, that $\chi(\mathbb{R}^d_\infty) = 2^d$.

- At first we prove a slight variation of the Erdős Rogers theorem (1962) about covering the space by copies of convex bodies
- We use result of Schmidt (1963), that strengthen famous Minkovskiy - Hlawka theorem.
- In the theorem 2 we also use a result of Odlyzko, Rush concerning packing of superballs.
- Then we construct a suitable lattice packing and cover the space by it's translates, using the theorem from item 1.

- At first we prove a slight variation of the Erdős Rogers theorem (1962) about covering the space by copies of convex bodies
- We use result of Schmidt (1963), that strengthen famous Minkovskiy - Hlawka theorem.
- In the theorem 2 we also use a result of Odlyzko, Rush concerning packing of superballs.
- Then we construct a suitable lattice packing and cover the space by it's translates, using the theorem from item 1.

- At first we prove a slight variation of the Erdős Rogers theorem (1962) about covering the space by copies of convex bodies
- We use result of Schmidt (1963), that strengthen famous Minkovskiy - Hlawka theorem.
- In the theorem 2 we also use a result of Odlyzko, Rush concerning packing of superballs.
- Then we construct a suitable lattice packing and cover the space by it's translates, using the theorem from item 1.

- At first we prove a slight variation of the Erdős Rogers theorem (1962) about covering the space by copies of convex bodies
- We use result of Schmidt (1963), that strengthen famous Minkovskiy - Hlawka theorem.
- In the theorem 2 we also use a result of Odlyzko, Rush concerning packing of superballs.
- Then we construct a suitable lattice packing and cover the space by it's translates, using the theorem from item 1.

- In addition, I proved the theorem concerning the chromatic number of the space with the segment of forbidden distances. Let A = [1, 1].
- **2** Theorem 3. Let \mathbb{R}^d_K be a normed space.
 - Then $\chi(\mathbb{R}^d_K, A) \leq (2(l+1) + o(1))^d$.
 - 2 Let p > 2. Then $\chi(\mathbb{R}_p^d, A) \le (2^{c_p}(l+1) + o(1))^d, c_p < 1, c_p → 0$ when $p → \infty$.
 - Let $l \geq 2$. Then $\chi(\mathbb{R}^d_K, A) \geq (l/2)^d$.
 - Let $l \ge 2$. Then $\chi(\mathbb{R}^d_p, A) \ge (b \cdot l)^d$, where $b = \frac{p'\sqrt{2}}{2}$ and $p' = \max\{p, \frac{p}{p-1}\}.$
 - **3** Let $l \ge 2$. Then $\chi(\mathbb{R}^d, A) \ge (b \cdot l)^d$ where $b \approx 0,755 \cdot \sqrt{2}$.

- In addition, I proved the theorem concerning the chromatic number of the space with the segment of forbidden distances.
 Let A = [1, I].
- **2** Theorem 3. Let \mathbb{R}^d_K be a normed space.
 - Then $\chi(\mathbb{R}^d_K, A) \leq (2(l+1) + o(1))^d$.
 - 2 Let p > 2. Then $\chi(\mathbb{R}_p^d, A) \le (2^{c_p}(l+1) + o(1))^d, c_p < 1, c_p → 0$ when $p \to \infty$.
 - Let $l \ge 2$. Then $\chi(\mathbb{R}^d_K, A) \ge (l/2)^d$
 - Let $l \ge 2$. Then $\chi(\mathbb{R}^d_p, A) \ge (b \cdot l)^d$, where $b = \frac{p'\sqrt{2}}{2}$ and $p' = \max\{p, \frac{p}{p-1}\}.$
 - **3** Let $l \ge 2$. Then $\chi(\mathbb{R}^d, A) \ge (b \cdot l)^d$ where $b \approx 0,755 \cdot \sqrt{2}$.

- In addition, I proved the theorem concerning the chromatic number of the space with the segment of forbidden distances.
 Let A = [1, I].
- **2** Theorem 3. Let \mathbb{R}^d_K be a normed space.
 - Then $\chi(\mathbb{R}^d_K, A) \leq (2(l+1) + o(1))^d$.
 - 2. Let p > 2. Then $\chi(\mathbb{R}_p^d, A) \leq (2^{c_p}(l+1) + o(1))^d, c_p < 1, c_p → 0 \text{ when } p → ∞.$
 - 3 Let $l \ge 2$. Then $\chi(\mathbb{R}^d_K, A) \ge (l/2)^d$
 - Let $l \ge 2$. Then $\chi(\mathbb{R}^d_p, A) \ge (b \cdot l)^d$, where $b = \frac{\frac{p'/2}{2}}{2}$ and $p' = \max\{p, \frac{p}{p-1}\}.$
 - Let $l \geq 2$. Then $\chi(\mathbb{R}^d, A) \geq (b \cdot l)^d$ where $b \approx 0,755 \cdot \sqrt{2}$.

- In addition, I proved the theorem concerning the chromatic number of the space with the segment of forbidden distances.
 Let A = [1, I].
- **2** Theorem 3. Let \mathbb{R}^d_K be a normed space.
 - Then $\chi(\mathbb{R}^d_K, A) \leq (2(l+1) + o(1))^d$.
 - ② Let p > 2. Then $\chi(\mathbb{R}_p^d, A) \le (2^{c_p}(l+1) + o(1))^d, c_p < 1, c_p \to 0$ when $p \to \infty$.
 - **③** Let l ≥ 2. Then $\chi(\mathbb{R}^d_K, A) ≥ (l/2)^d$.
 - Let $l \ge 2$. Then $\chi(\mathbb{R}_p^d, A) \ge (b \cdot l)^d$, where $b = \frac{p\sqrt{2}}{2}$ and $p' = \max\{p, \frac{p}{p-1}\}.$
 - Let $l \geq 2$. Then $\chi(\mathbb{R}^d, A) \geq (b \cdot l)^d$ where $b \approx 0,755 \cdot \sqrt{2}$.

- In addition, I proved the theorem concerning the chromatic number of the space with the segment of forbidden distances.
 Let A = [1, I].
- **2** Theorem 3. Let \mathbb{R}^d_K be a normed space.
 - Then $\chi(\mathbb{R}^d_K, A) \leq (2(l+1) + o(1))^d$.
 - ② Let p > 2. Then $\chi(\mathbb{R}_p^d, A) \le (2^{c_p}(l+1) + o(1))^d, c_p < 1, c_p \to 0$ when $p \to \infty$.
 - **6** Let $l \ge 2$. Then $\chi(\mathbb{R}^d_K, A) \ge (l/2)^d$.
 - Let $l \ge 2$. Then $\chi(\mathbb{R}^d_p, A) \ge (b \cdot l)^d$, where $b = \frac{p'_{\sqrt{2}}}{2}$ and $p' = \max\{p, \frac{p}{p-1}\}.$
 - Let $l \geq 2$. Then $\chi(\mathbb{R}^d, A) \geq (b \cdot l)^d$ where $b \approx 0,755 \cdot \sqrt{2}$.

- In addition, I proved the theorem concerning the chromatic number of the space with the segment of forbidden distances.
 Let A = [1, 1].
- **2** Theorem 3. Let \mathbb{R}^d_K be a normed space.
 - Then $\chi(\mathbb{R}^d_K, A) \leq (2(l+1) + o(1))^d$.
 - ② Let p > 2. Then $\chi(\mathbb{R}_p^d, A) \le (2^{c_p}(l+1) + o(1))^d, c_p < 1, c_p \to 0$ when $p \to \infty$.
 - **6** Let $l \ge 2$. Then $\chi(\mathbb{R}^d_K, A) \ge (l/2)^d$.
 - Let $l \ge 2$. Then $\chi(\mathbb{R}^d_p, A) \ge (b \cdot l)^d$, where $b = \frac{p'/2}{2}$ and $p' = \max\{p, \frac{p}{p-1}\}.$
 - Let $l \ge 2$. Then $\chi(\mathbb{R}^d, A) \ge (b \cdot l)^d$ where $b \approx 0,755 \cdot \sqrt{2}$.

- We will limit ourself to the Euclidean case. In general, we have upper bound $\chi(\mathbb{R}^d, A) \leq (3 + o(1))^{dk}$, if A is a k-element set.
- ² From the other side, best known lower bounds on the chromatic number of the space with k forbidden distances are obtained on the set $A_0 = \{\sqrt{2p}, \ldots, \sqrt{2kp}\}$, where p is a certain prime number.
- 3 The estimate is of the form $\chi(\mathbb{R}^d, A_0) > (c_1 k)^{c_2 d}$ with some constants c_1, c_2 .
- $A_0 \subset A$ if $I = \sqrt{k}$, so, by the theorem 3, $\chi(\mathbb{R}^d, A_0) \leq (2(\sqrt{k}+1) + o(1))^d = (c'_1k)^{c'_2d}$ with some c'_1, c'_2 .
- Output of the set o

- We will limit ourself to the Euclidean case. In general, we have upper bound $\chi(\mathbb{R}^d, A) \leq (3 + o(1))^{dk}$, if A is a k-element set.
- 2 From the other side, best known lower bounds on the chromatic number of the space with k forbidden distances are obtained on the set $A_0 = \{\sqrt{2p}, \ldots, \sqrt{2kp}\}$, where p is a certain prime number.
- $A_0 \subset A$ if $l = \sqrt{k}$, so, by the theorem 3, $\chi(\mathbb{R}^d, A_0) \leq (2(\sqrt{k}+1) + o(1))^d = (c'_1k)^{c'_2d}$ with some c'_1, c'_2 .
- Output of the set o

- We will limit ourself to the Euclidean case. In general, we have upper bound $\chi(\mathbb{R}^d, A) \leq (3 + o(1))^{dk}$, if A is a k-element set.
- **2** From the other side, best known lower bounds on the chromatic number of the space with k forbidden distances are obtained on the set $A_0 = \{\sqrt{2p}, \ldots, \sqrt{2kp}\}$, where p is a certain prime number.
- The estimate is of the form $\chi(\mathbb{R}^d, A_0) > (c_1 k)^{c_2 d}$ with some constants c_1, c_2 .
- $A_0 \subset A$ if $l = \sqrt{k}$, so, by the theorem 3, $\chi(\mathbb{R}^d, A_0) \leq (2(\sqrt{k}+1) + o(1))^d = (c'_1k)^{c'_2d}$ with some c'_1, c'_2 .
- Infortunately, theorem 3 does not give an improvement of the estimate from item 1 for arbitrary k-element set A.

- We will limit ourself to the Euclidean case. In general, we have upper bound $\chi(\mathbb{R}^d, A) \leq (3 + o(1))^{dk}$, if A is a k-element set.
- **2** From the other side, best known lower bounds on the chromatic number of the space with k forbidden distances are obtained on the set $A_0 = \{\sqrt{2p}, \ldots, \sqrt{2kp}\}$, where p is a certain prime number.
- The estimate is of the form $\chi(\mathbb{R}^d, A_0) > (c_1 k)^{c_2 d}$ with some constants c_1, c_2 .
- $A_0 \subset A$ if $l = \sqrt{k}$, so, by the theorem 3, $\chi(\mathbb{R}^d, A_0) \leq (2(\sqrt{k}+1) + o(1))^d = (c'_1k)^{c'_2d}$ with some c'_1, c'_2 .
- Infortunately, theorem 3 does not give an improvement of the estimate from item 1 for arbitrary k-element set A.

- We will limit ourself to the Euclidean case. In general, we have upper bound $\chi(\mathbb{R}^d, A) \leq (3 + o(1))^{dk}$, if A is a k-element set.
- 2 From the other side, best known lower bounds on the chromatic number of the space with k forbidden distances are obtained on the set $A_0 = \{\sqrt{2p}, \ldots, \sqrt{2kp}\}$, where p is a certain prime number.
- The estimate is of the form $\chi(\mathbb{R}^d, A_0) > (c_1 k)^{c_2 d}$ with some constants c_1, c_2 .
- $A_0 \subset A$ if $I = \sqrt{k}$, so, by the theorem 3, $\chi(\mathbb{R}^d, A_0) \leq (2(\sqrt{k}+1) + o(1))^d = (c'_1k)^{c'_2d}$ with some c'_1, c'_2 .
- Output of the stimate from item 1 for arbitrary k-element set A.

- Proof of the upper bounds is quite similar to the proof of the theorems 1 and 2.
- ② The technique, used to obtain lower bounds, is also based on a construction of some packing.
- Additional ingredients are famous Kabatyanskiy Levenstein bound and Pitchugov's bound on the radius of Jung's ball in R^d_p.

- Proof of the upper bounds is quite similar to the proof of the theorems 1 and 2.
- The technique, used to obtain lower bounds, is also based on a construction of some packing.
- Additional ingredients are famous Kabatyanskiy Levenstein bound and Pitchugov's bound on the radius of Jung's ball in R^d_p.

- Proof of the upper bounds is quite similar to the proof of the theorems 1 and 2.
- The technique, used to obtain lower bounds, is also based on a construction of some packing.

Thank You

æ

э