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Chromatic number

F = Fm(x) : Rn F→ {1, . . . ,m}, (F (x0) = F (x))⇒ |x−x0| 6= 1

χ(Rn) = min{m ∈ N : ∃Fm}.

4 ≤ χ(R2) ≤ 7

(1, 239 + o(1))n ≤ χ(Rn) ≤ (3 + o(1))n – Raigorodskii;
Larman, Rogers
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Results in low dimensions

1

dim 1 2 3 4 5 6
χ ≥ 2 4 6 7 9 11

2

dim 7 8 9 10 11 12
χ ≥ 15 16 16 19 20 24

3 Estimates in dimensions 9, 11, 12 are due to Larman, Rogers
4 Estimate in dimension 10 is due to Raigorodskii
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Result in R9

Theorem 1
The inequality holds χ(R9) ≥ 21.
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Lifting lower bounds

We call a graph W = (V ,E ) unit-distance in metric space Γ,
if V ⊂ (Γ, ρ), and ∀(x1, x2) ∈ E ρ(x1, x2) = 1, where ρ is
metric in Γ.
Theorem 2 (Raiskii)
Take G – unit-distance graph on the sphere Sn−2 ⊂ Rn−1 with
radius r <

√
15
4 . Then we can construct a unit-distance graph

in Rn with chromatic number at least χ(G ) + 2.
Theorem 3
Take G – unit-distance graph on the sphere
Sn−2 ⊂ Rn−1, n ≥ 3, with radius rs ,
1/2 ≤ rs ≤

√
1+
√
3

2+
√
3
≈ 0.856, rs 6=

√
2/3. Then we can

construct a unit-distance graph in Rn+1 with chromatic
number at least χ(G ) + 4.
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result in R10,R11

Corollary (from theorems 1,2,3)
The inequalities hold χ(R10) ≥ 23, χ(R11) ≥ 25.

dim 7 8 9 10 11 12
Previous: χ ≥ 15 16 16 19 20 24
Obtained: χ ≥ 15 16 21 23 25 25
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Sketch of proof of theorem 1. Construction

1 we consider a graph G of (10,5,3)-vectors – G = (V ,E ) with
V = {v = (v1, . . . , v10), vi ∈ {0, 1}, v1 + . . .+ v10 = 5},
E = {{u, v} ∈ V × V , (u, v) = u1v1 + . . .+ u10v10 = 3}.

2 α(G ) is the maximal power of subset of the set V such that
each pair of vertices from the subset is not connected by edge
(α(G ) – independence number).

3 |V | = 252, χ(G ) ≥ |V |/α(G ).

4 Theorem 4 α(G ) = 12.
Theorem 1 follows from this theorem.
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Outline of proof of theorem 4

1 α(G ) ≥ 12 :

1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0
1 1 1 1 0 C 1

4 0
C 1
4 0 1 1 1 1 0

0 0 0 0 0 1 1 1 1 1
1 1 1 1 0 0 0 0 0 1

2 Lemma 1. In each maximal independent set W of vectors
from G there is two with scalar product equal to 1.

3 We enumerate possibilities of how can independent set look,
using some symmetry of set V , starting from two vectors from
lemma 1.
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Proof of theorem 3. Auxiliary Lemmas

Lemma 2
∀r > 1/2 ∀ε > 0 ∃r0 < r , |r − r0| < ε, so that every circle
Sr0 with radius r0 contains cycle of odd length with unit edges.
Corollary
For arbitrary coloring, for all r > 1/2 and for arbitrary fixed
color k sphere S2

r ⊂ R3 with radius r contains a unit edge
connecting vertices, both painted in color that differs from k .
Lemma 3
∀r > 0 ∀n ≥ 2 ∃A,B ∈ Rn, |AB| = r , so that color of A
differs from color of B .
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End of proof

The values for r in theorem 3 were chosen so that |PP0| > 1/2.
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The end

Thank You
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