On the chromatic number of small-dimensional Euclidean spaces

Kupavskiy A.B. Raigorodskiy A.M.

Department of Mechanics and Mathematics Moscow State University Moscow, Russia

7-11 September, 2009, Bordeaux

Chromatic number

$-$

$$
F=F_{m}(x): \mathbb{R}^{n} \xrightarrow{F}\{1, \ldots, m\}, \quad\left(F\left(x_{0}\right)=F(x)\right) \Rightarrow\left|x-x_{0}\right| \neq 1
$$

- $4 \leq \chi\left(\mathbb{R}^{2}\right) \leq 7$

- $(1,239+o(1))^{n} \leq \chi\left(\mathbb{R}^{n}\right) \leq(3+o(1))^{n}$ - Raigorodskii;

Larman, Rogers

Chromatic number

$$
F=F_{m}(x): \mathbb{R}^{n} \xrightarrow{F}\{1, \ldots, m\}, \quad\left(F\left(x_{0}\right)=F(x)\right) \Rightarrow\left|x-x_{0}\right| \neq 1
$$

-

$$
\chi\left(\mathbb{R}^{n}\right)=\min \left\{m \in \mathbb{N}: \exists F_{m}\right\} .
$$

- $4 \leq \chi\left(\mathbb{R}^{2}\right) \leq 7$
- $(1,239+o(1))^{n} \leq \chi\left(\mathbb{R}^{n}\right) \leq(3+o(1))^{n}$ - Raigorodskii;

Larman, Rogers

Chromatic number

$$
F=F_{m}(x): \mathbb{R}^{n} \xrightarrow{F}\{1, \ldots, m\}, \quad\left(F\left(x_{0}\right)=F(x)\right) \Rightarrow\left|x-x_{0}\right| \neq 1
$$

-

$$
\chi\left(\mathbb{R}^{n}\right)=\min \left\{m \in \mathbb{N}: \exists F_{m}\right\} .
$$

- $4 \leq \chi\left(\mathbb{R}^{2}\right) \leq 7$
$\bullet(1,239+o(1))^{n} \leq \chi\left(\mathbb{R}^{n}\right) \leq(3+o(1))^{n}$ - Raigorodskii; Larman, Rogers

Chromatic number

$$
F=F_{m}(x): \mathbb{R}^{n} \xrightarrow{F}\{1, \ldots, m\}, \quad\left(F\left(x_{0}\right)=F(x)\right) \Rightarrow\left|x-x_{0}\right| \neq 1
$$

-

$$
\chi\left(\mathbb{R}^{n}\right)=\min \left\{m \in \mathbb{N}: \exists F_{m}\right\}
$$

- $4 \leq \chi\left(\mathbb{R}^{2}\right) \leq 7$
- $(1,239+o(1))^{n} \leq \chi\left(\mathbb{R}^{n}\right) \leq(3+o(1))^{n}$ - Raigorodskii; Larman, Rogers

Results in low dimensions

(1)

dim	1	2	3	4	5	6
$\chi \geq$	2	4	6	7	9	11

dim	7	8	9	10	11	12
$\chi \geq$	15	16	16	19	20	24

(3) Estimates in dimensions 9, 11, 12 are due to Larman, Rogers
(- Estimate in dimension 10 is due to Raigorodskii

Results in low dimensions

(1)

dim	1	2	3	4	5	6
$\chi \geq$	2	4	6	7	9	11

(2)

dim	7	8	9	10	11	12
$\chi \geq$	15	16	16	19	20	24

(3) Estimates in dimensions 9, 11, 12 are due to Larman, Rogers
(astimate in dimension 10 is due to Raigorodskii

Results in low dimensions

(1)

dim	1	2	3	4	5	6
$\chi \geq$	2	4	6	7	9	11

(2)

dim	7	8	9	10	11	12
$\chi \geq$	15	16	16	19	20	24

(3) Estimates in dimensions 9, 11, 12 are due to Larman, Rogers
(9) Estimate in dimension 10 is due to Raigorodskii

Results in low dimensions

(1)

dim	1	2	3	4	5	6
$\chi \geq$	2	4	6	7	9	11

(2)

dim	7	8	9	10	11	12
$\chi \geq$	15	16	16	19	20	24

(3) Estimates in dimensions 9, 11, 12 are due to Larman, Rogers
(9) Estimate in dimension 10 is due to Raigorodskii

Result in \mathbb{R}^{9}

Theorem 1
The inequality holds $\chi\left(\mathbb{R}^{9}\right) \geq 21$.

Lifting lower bounds

- We call a graph $W=(V, E)$ unit-distance in metric space Γ, if $V \subset(\Gamma, \rho)$, and $\forall\left(x_{1}, x_{2}\right) \in E \rho\left(x_{1}, x_{2}\right)=1$, where ρ is metric in Γ.
- Theorem 2 (Raiskii) Take G - unit-distance graph on the sphere $S^{n-2} \subset \mathbb{R}^{n-1}$ with radius $r<\frac{\sqrt{15}}{4}$. Then we can construct a unit-distance graph in \mathbb{R}^{n} with chromatic number at least $\chi(G)+2$.
- Theorem 3

Take G - unit-clistance graph on the sphere $S^{n-2} \subset \mathbb{R}^{n-1}, n \geq 3$, with radius r_{s},
$1 / 2 \leq r_{s} \leq \sqrt{\frac{1+\sqrt{3}}{2+\sqrt{3}}} \approx 0.856, \quad r_{s} \neq \sqrt{2 / 3}$. Then we can
construct a unit-distance graph in \mathbb{R}^{n+1} with chromatic number at least $\chi(G)+4$.

Lifting lower bounds

- We call a graph $W=(V, E)$ unit-distance in metric space Γ, if $V \subset(\Gamma, \rho)$, and $\forall\left(x_{1}, x_{2}\right) \in E \rho\left(x_{1}, x_{2}\right)=1$, where ρ is metric in Γ.
- Theorem 2 (Raiskii)

Take G - unit-distance graph on the sphere $S^{n-2} \subset \mathbb{R}^{n-1}$ with radius $r<\frac{\sqrt{15}}{4}$. Then we can construct a unit-distance graph in \mathbb{R}^{n} with chromatic number at least $\chi(G)+2$.

Take G - unit-distance graph on the sphere $S^{n-2} \subset \mathbb{R}^{n-1}, n \geq 3$, with radius r_{s}, $1 / 2 \leq r_{s} \leq \sqrt{\frac{1+\sqrt{3}}{2+\sqrt{3}}} \approx 0.856, \quad r_{s} \neq \sqrt{2 / 3}$. Then we can construct a unit-distance graph in \mathbb{R}^{n+1} with chromatic number at least $\chi(G)+4$.

Lifting lower bounds

- We call a graph $W=(V, E)$ unit-distance in metric space Γ, if $V \subset(\Gamma, \rho)$, and $\forall\left(x_{1}, x_{2}\right) \in E \rho\left(x_{1}, x_{2}\right)=1$, where ρ is metric in Γ.
- Theorem 2 (Raiskii)

Take G - unit-distance graph on the sphere $S^{n-2} \subset \mathbb{R}^{n-1}$ with radius $r<\frac{\sqrt{15}}{4}$. Then we can construct a unit-distance graph in \mathbb{R}^{n} with chromatic number at least $\chi(G)+2$.

- Theorem 3

Take G - unit-distance graph on the sphere $S^{n-2} \subset \mathbb{R}^{n-1}, n \geq 3$, with radius r_{s}, $1 / 2 \leq r_{s} \leq \sqrt{\frac{1+\sqrt{3}}{2+\sqrt{3}}} \approx 0.856, \quad r_{s} \neq \sqrt{2 / 3}$. Then we can construct a unit-distance graph in \mathbb{R}^{n+1} with chromatic number at least $\chi(G)+4$.

result in $\mathbb{R}^{10}, \mathbb{R}^{11}$

- Corollary (from theorems 1,2,3) The inequalities hold $\chi\left(\mathbb{R}^{10}\right) \geq 23, \chi\left(\mathbb{R}^{11}\right) \geq 25$.

result in $\mathbb{R}^{10}, \mathbb{R}^{11}$

- Corollary (from theorems 1,2,3)

The inequalities hold $\chi\left(\mathbb{R}^{10}\right) \geq 23, \chi\left(\mathbb{R}^{11}\right) \geq 25$.

	dim	7	8	9	10	11	12
Previous:	$\chi \geq$	15	16	16	19	20	24
Obtained:	$\chi \geq$	15	16	21	23	25	25

Sketch of proof of theorem 1. Construction

(1) we consider a graph G of $(10,5,3)$-vectors $-G=(V, E)$ with $V=\left\{v=\left(v_{1}, \ldots, v_{10}\right), v_{i} \in\{0,1\}, v_{1}+\ldots+v_{10}=5\right\}$, $E=\left\{\{u, v\} \in V \times V,(u, v)=u_{1} v_{1}+\ldots+u_{10} v_{10}=3\right\}$.
(2) $\alpha(G)$ is the maximal power of subset of the set V such that each pair of vertices from the subset is not connected by edge ($\alpha(G)$ - independence number).
(- Theorem $4 \alpha(G)=12$.
Theorem 1 follows from this theorem.

Sketch of proof of theorem 1. Construction

(1) we consider a graph G of $(10,5,3)$-vectors $-G=(V, E)$ with $V=\left\{v=\left(v_{1}, \ldots, v_{10}\right), v_{i} \in\{0,1\}, v_{1}+\ldots+v_{10}=5\right\}$, $E=\left\{\{u, v\} \in V \times V,(u, v)=u_{1} v_{1}+\ldots+u_{10} v_{10}=3\right\}$.
(2) $\alpha(G)$ is the maximal power of subset of the set V such that each pair of vertices from the subset is not connected by edge ($\alpha(G)$ - independence number).
(1) Theorem $4 \alpha(G)=12$

Theorem 1 follows from this theorem.

Sketch of proof of theorem 1. Construction

(1) we consider a graph G of $(10,5,3)$-vectors $-G=(V, E)$ with $V=\left\{v=\left(v_{1}, \ldots, v_{10}\right), v_{i} \in\{0,1\}, v_{1}+\ldots+v_{10}=5\right\}$, $E=\left\{\{u, v\} \in V \times V,(u, v)=u_{1} v_{1}+\ldots+u_{10} v_{10}=3\right\}$.
(2) $\alpha(G)$ is the maximal power of subset of the set V such that each pair of vertices from the subset is not connected by edge ($\alpha(G)$ - independence number).
(3) $|V|=252, \quad \chi(G) \geq|V| / \alpha(G)$.
(- Theorem $4 \alpha(G)=12$.
Theorem 1 follows from this theorem.

Sketch of proof of theorem 1. Construction

(1) we consider a graph G of $(10,5,3)$-vectors $-G=(V, E)$ with $V=\left\{v=\left(v_{1}, \ldots, v_{10}\right), v_{i} \in\{0,1\}, v_{1}+\ldots+v_{10}=5\right\}$, $E=\left\{\{u, v\} \in V \times V,(u, v)=u_{1} v_{1}+\ldots+u_{10} v_{10}=3\right\}$.
(2) $\alpha(G)$ is the maximal power of subset of the set V such that each pair of vertices from the subset is not connected by edge ($\alpha(G)$ - independence number).
(3) $|V|=252, \quad \chi(G) \geq|V| / \alpha(G)$.
(4) Theorem $4 \alpha(G)=12$.

Theorem 1 follows from this theorem.

Outline of proof of theorem 4

(1) $\alpha(G) \geq 12$:

1	1	1	1	1	0	0	0	0	0			
0	0	0	0	1	1	1	1	1	0			
1	1	1	1	0	0	C_{4}^{1}						0
	C_{4}^{1}	0	1	1	1	1	0					
0	0	0	0	0	1	1	1	1	1			
1	1	1	1	0	0	0	0	0	1			

(2) Lemma 1. In each maximal independent set W of vectors from G there is two with scalar product equal to 1 .
(3) We enumerate possibilities of how can independent set look, using some symmetry of set V, starting from two vectors from lemma 1.

Outline of proof of theorem 4

(1) $\alpha(G) \geq 12$:

(2) Lemma 1. In each maximal independent set W of vectors from G there is two with scalar product equal to 1 .
(3) We enumerate possibilities of how can independent set look, using some symmetry of set V, starting from two vectors from lemma 1.

Outline of proof of theorem 4

(1) $\alpha(G) \geq 12$:

(2) Lemma 1. In each maximal independent set W of vectors from G there is two with scalar product equal to 1 .
(3) We enumerate possibilities of how can independent set look, using some symmetry of set V, starting from two vectors from lemma 1.

Proof of theorem 3. Auxiliary Lemmas

- Lemma 2
$\forall r>1 / 2 \forall \varepsilon>0 \quad \exists r_{0}<r,\left|r-r_{0}\right|<\varepsilon$, so that every circle $S_{r_{0}}$ with radius r_{0} contains cycle of odd length with unit edges.
- Corollary

For arbitrary coloring, for all $r>1 / 2$ and for arbitrary fixed color k sphere $S_{r}^{2} \subset \mathbb{R}^{3}$ with radius r contains a unit edge connecting vertices, both painted in color that differs from k

- Lemma 3
$\forall r>0 \quad \forall n \geq 2 \exists A, B \in \mathbb{R}^{n},|A B|=r$, so that color of A
differs from color of B.

Proof of theorem 3. Auxiliary Lemmas

- Lemma 2
$\forall r>1 / 2 \quad \forall \varepsilon>0 \quad \exists r_{0}<r,\left|r-r_{0}\right|<\varepsilon$, so that every circle $S_{r_{0}}$ with radius r_{0} contains cycle of odd length with unit edges.
- Corollary

For arbitrary coloring, for all $r>1 / 2$ and for arbitrary fixed color k sphere $S_{r}^{2} \subset \mathbb{R}^{3}$ with radius r contains a unit edge connecting vertices, both painted in color that differs from k.

- Lemma 3
$\forall r>0 \quad \forall n \geq 2 \exists A, B \in \mathbb{R}^{n},|A B|=r$, so that color of A
differs from color of B

Proof of theorem 3. Auxiliary Lemmas

- Lemma 2
$\forall r>1 / 2 \forall \varepsilon>0 \quad \exists r_{0}<r,\left|r-r_{0}\right|<\varepsilon$, so that every circle $S_{r_{0}}$ with radius r_{0} contains cycle of odd length with unit edges.
- Corollary

For arbitrary coloring, for all $r>1 / 2$ and for arbitrary fixed color k sphere $S_{r}^{2} \subset \mathbb{R}^{3}$ with radius r contains a unit edge connecting vertices, both painted in color that differs from k.

- Lemma 3
$\forall r>0 \quad \forall n \geq 2 \exists A, B \in \mathbb{R}^{n},|A B|=r$, so that color of A differs from color of B.

End of proof

- The values for r in theorem 3 were chosen so that $\left|P P_{0}\right|>1 / 2$.

End of proof

- The values for r in theorem 3 were chosen so that $\left|P P_{0}\right|>1 / 2$.

The end

Thank You

