On the chromatic number of small-dimensional Euclidean spaces

Kupavskiy A.B. Raigorodskiy A.M.

Department of Mechanics and Mathematics Moscow State University Moscow, Russia

7-11 September, 2009, Bordeaux

$F = F_m(x) \colon \mathbb{R}^n \xrightarrow{F} \{1, \dots, m\}, \quad (F(x_0) = F(x)) \Rightarrow |x - x_0| \neq 1$ $\Upsilon(\mathbb{R}^n) = \min\{m \in \mathbb{N} : \exists F_m\}.$

- $4 \leq \chi(\mathbb{R}^2) \leq 7$
- $(1,239+o(1))^n \leq \chi(\mathbb{R}^n) \leq (3+o(1))^n$ Raigorodskii; Larman, Rogers

b) A (B) b) A (B) b)

$F = F_m(x) \colon \mathbb{R}^n \xrightarrow{F} \{1, \dots, m\}, \quad (F(x_0) = F(x)) \Rightarrow |x - x_0| \neq 1$

$$\chi(\mathbb{R}^n) = \min\{m \in \mathbb{N} : \exists F_m\}.$$

- $4 \leq \chi(\mathbb{R}^2) \leq 7$
- $(1,239+o(1))^n \leq \chi(\mathbb{R}^n) \leq (3+o(1))^n$ Raigorodskii; Larman, Rogers

-

$F = F_m(x) \colon \mathbb{R}^n \xrightarrow{F} \{1, \dots, m\}, \quad (F(x_0) = F(x)) \Rightarrow |x - x_0| \neq 1$ $\chi(\mathbb{R}^n) = \min\{m \in \mathbb{N} : \exists F_m\}.$

- $4 \leq \chi(\mathbb{R}^2) \leq 7$
- $(1,239+o(1))^n \leq \chi(\mathbb{R}^n) \leq (3+o(1))^n$ Raigorodskii; Larman, Rogers

b) A (B) b) A (B) b)

-

$F = F_m(x) \colon \mathbb{R}^n \xrightarrow{F} \{1, \dots, m\}, \quad (F(x_0) = F(x)) \Rightarrow |x - x_0| \neq 1$ $\chi(\mathbb{R}^n) = \min\{m \in \mathbb{N} : \exists F_m\}.$

- $4 \le \chi(\mathbb{R}^2) \le 7$
- $(1,239+o(1))^n \leq \chi(\mathbb{R}^n) \leq (3+o(1))^n$ Raigorodskii; Larman, Rogers

不是下 不是下

1									
-		dim	1	2	3	4	5	6	
		$\chi \ge$	2	4	6	7	9	11	
2									
	din	n 7			9	10	1	.1	12
	χ	> 1!		16	16	19			24

- Sestimates in dimensions 9, 11, 12 are due to Larman, Rogers
- Istimate in dimension 10 is due to Raigorodskii

dim	1	2	3	4	5	6
$\chi \ge$	2	4	6	7	9	11

2		
	,	

dim	7	8	9	10	11	12
$\chi \geq$	15	16	16	19	20	24

3 Estimates in dimensions 9, 11, 12 are due to Larman, Rogers

Istimate in dimension 10 is due to Raigorodskii

< 3 > < 3

2

dim	1	2	3	4	5	6
$\chi \geq$	2	4	6	7	9	11

dim	7	8	9	10	11	12
$\chi \ge$	15	16	16	19	20	24

Sestimates in dimensions 9, 11, 12 are due to Larman, Rogers

Istimate in dimension 10 is due to Raigorodskii

2

dim	1	2	3	4	5	6
$\chi \ge$	2	4	6	7	9	11

dim	7	8	9	10	11	12
$\chi \ge$	15	16	16	19	20	24

- Sestimates in dimensions 9, 11, 12 are due to Larman, Rogers
- Stimate in dimension 10 is due to Raigorodskii

Theorem 1 The inequality holds $\chi(\mathbb{R}^9) \ge 21$.

Lifting lower bounds

- We call a graph W = (V, E) unit-distance in metric space Γ, if V ⊂ (Γ, ρ), and ∀(x₁, x₂) ∈ E ρ(x₁, x₂) = 1, where ρ is metric in Γ.
- Theorem 2 (Raiskii)

Take G – unit-distance graph on the sphere $S^{n-2} \subset \mathbb{R}^{n-1}$ with radius $r < \frac{\sqrt{15}}{4}$. Then we can construct a unit-distance graph in \mathbb{R}^n with chromatic number at least $\chi(G) + 2$.

• Theorem 3

Take G – unit-distance graph on the sphere $S^{n-2} \subset \mathbb{R}^{n-1}, n \geq 3$, with radius r_s , $1/2 \leq r_s \leq \sqrt{\frac{1+\sqrt{3}}{2+\sqrt{3}}} \approx 0.856$, $r_s \neq \sqrt{2/3}$. Then we can construct a unit-distance graph in \mathbb{R}^{n+1} with chromatic number at least $\chi(G) + 4$.

• • **=** • • **=**

Lifting lower bounds

- We call a graph W = (V, E) unit-distance in metric space Γ, if V ⊂ (Γ, ρ), and ∀(x₁, x₂) ∈ E ρ(x₁, x₂) = 1, where ρ is metric in Γ.
- Theorem 2 (Raiskii)

Take G – unit-distance graph on the sphere $S^{n-2} \subset \mathbb{R}^{n-1}$ with radius $r < \frac{\sqrt{15}}{4}$. Then we can construct a unit-distance graph in \mathbb{R}^n with chromatic number at least $\chi(G) + 2$.

• Theorem 3

Take G – unit-distance graph on the sphere $S^{n-2} \subset \mathbb{R}^{n-1}, n \geq 3$, with radius r_s , $1/2 \leq r_s \leq \sqrt{\frac{1+\sqrt{3}}{2+\sqrt{3}}} \approx 0.856$, $r_s \neq \sqrt{2/3}$. Then we can construct a unit-distance graph in \mathbb{R}^{n+1} with chromatic number at least $\chi(G) + 4$.

• • • • • • •

Lifting lower bounds

- We call a graph W = (V, E) unit-distance in metric space Γ, if V ⊂ (Γ, ρ), and ∀(x₁, x₂) ∈ E ρ(x₁, x₂) = 1, where ρ is metric in Γ.
- Theorem 2 (Raiskii)

Take G – unit-distance graph on the sphere $S^{n-2} \subset \mathbb{R}^{n-1}$ with radius $r < \frac{\sqrt{15}}{4}$. Then we can construct a unit-distance graph in \mathbb{R}^n with chromatic number at least $\chi(G) + 2$.

Theorem 3

Take G – unit-distance graph on the sphere $S^{n-2} \subset \mathbb{R}^{n-1}, n \geq 3$, with radius r_s , $1/2 \leq r_s \leq \sqrt{\frac{1+\sqrt{3}}{2+\sqrt{3}}} \approx 0.856$, $r_s \neq \sqrt{2/3}$. Then we can construct a unit-distance graph in \mathbb{R}^{n+1} with chromatic number at least $\chi(G) + 4$.

• • = • • = •

• Corollary (from theorems 1,2,3) The inequalities hold $\chi(\mathbb{R}^{10}) \ge 23$, $\chi(\mathbb{R}^{11}) \ge 25$.

	dim	7		9	10	11	12
Previous:	$\chi \ge$	15	16	16	19	20	24
Obtained:	$\chi \ge$	15	16	21	23	25	25

3 b 4 3

• Corollary (from theorems 1,2,3) The inequalities hold $\chi(\mathbb{R}^{10}) \ge 23$, $\chi(\mathbb{R}^{11}) \ge 25$.

	dim	7	8	9	10	11	12
Previous:	$\chi \ge$	15	16	16	19	20	24
Obtained:	$\chi \geq$	15	16	21	23	25	25

3 N -

- we consider a graph G of (10,5,3)-vectors G = (V, E) with $V = \{v = (v_1, \dots, v_{10}), v_i \in \{0,1\}, v_1 + \dots + v_{10} = 5\}, E = \{\{u, v\} \in V \times V, (u, v) = u_1v_1 + \dots + u_{10}v_{10} = 3\}.$
- Q α(G) is the maximal power of subset of the set V such that each pair of vertices from the subset is not connected by edge (α(G) – independence number).

③
$$|V| = 252$$
, $\chi(G) ≥ |V|/α(G)$.

Theorem 4 α(G) = 12.
 Theorem 1 follows from this theorem

4 B M 4 B M

- we consider a graph G of (10,5,3)-vectors G = (V, E) with $V = \{v = (v_1, \dots, v_{10}), v_i \in \{0,1\}, v_1 + \dots + v_{10} = 5\}, E = \{\{u, v\} \in V \times V, (u, v) = u_1v_1 + \dots + u_{10}v_{10} = 3\}.$
- α(G) is the maximal power of subset of the set V such that each pair of vertices from the subset is not connected by edge (α(G) - independence number).
- |V| = 252, $\chi(G) \ge |V| / \alpha(G)$.
- Theorem 4 α(G) = 12.
 Theorem 1 follows from this theorem

4 B K 4 B K

- we consider a graph G of (10,5,3)-vectors G = (V, E) with $V = \{v = (v_1, \dots, v_{10}), v_i \in \{0,1\}, v_1 + \dots + v_{10} = 5\}, E = \{\{u, v\} \in V \times V, (u, v) = u_1v_1 + \dots + u_{10}v_{10} = 3\}.$
- α(G) is the maximal power of subset of the set V such that each pair of vertices from the subset is not connected by edge (α(G) - independence number).

■
$$|V| = 252$$
, $\chi(G) \ge |V| / \alpha(G)$.

Theorem 4 α(G) = 12.
 Theorem 1 follows from this theorem

4 3 6 4 3 6

- we consider a graph G of (10,5,3)-vectors G = (V, E) with $V = \{v = (v_1, \dots, v_{10}), v_i \in \{0,1\}, v_1 + \dots + v_{10} = 5\}, E = \{\{u, v\} \in V \times V, (u, v) = u_1v_1 + \dots + u_{10}v_{10} = 3\}.$
- α(G) is the maximal power of subset of the set V such that each pair of vertices from the subset is not connected by edge (α(G) - independence number).

③
$$|V| = 252$$
, $\chi(G) ≥ |V|/α(G)$.

Theorem 4 α(G) = 12.
 Theorem 1 follows from this theorem.

Outline of proof of theorem 4

1
$$\alpha(G) \ge 12$$
 :

- **Lemma 1**. In each maximal independent set W of vectors from G there is two with scalar product equal to 1.
- We enumerate possibilities of how can independent set look, using some symmetry of set V, starting from two vectors from lemma 1.

Outline of proof of theorem 4

1
$$\alpha(G) \ge 12$$
 :

- **Lemma 1**. In each maximal independent set W of vectors from G there is two with scalar product equal to 1.
- We enumerate possibilities of how can independent set look, using some symmetry of set V, starting from two vectors from lemma 1.

Outline of proof of theorem 4

1
$$\alpha(G) \ge 12$$
 :

- **Lemma 1**. In each maximal independent set W of vectors from G there is two with scalar product equal to 1.
- We enumerate possibilities of how can independent set look, using some symmetry of set V, starting from two vectors from lemma 1.

Proof of theorem 3. Auxiliary Lemmas

• Lemma 2

 $\begin{array}{ll} \forall r>1/2 \ \forall \varepsilon>0 \ \exists r_0 < r, |r-r_0| < \varepsilon \text{, so that every circle} \\ S_{r_0} \text{ with radius } r_0 \text{ contains cycle of odd length with unit edges.} \end{array}$

Corollary

For arbitrary coloring, for all r > 1/2 and for arbitrary fixed color k sphere $S_r^2 \subset \mathbb{R}^3$ with radius r contains a unit edge connecting vertices, both painted in color that differs from k.

• Lemma 3

 $\forall r > 0 \ \forall n \ge 2 \ \exists A, B \in \mathbb{R}^n, |AB| = r$, so that color of A differs from color of B.

Proof of theorem 3. Auxiliary Lemmas

• Lemma 2

 $\begin{array}{ll} \forall r>1/2 \ \forall \varepsilon>0 \ \exists r_0 < r, |r-r_0| < \varepsilon \text{, so that every circle} \\ S_{r_0} \text{ with radius } r_0 \text{ contains cycle of odd length with unit edges.} \end{array}$

Corollary

For arbitrary coloring, for all r > 1/2 and for arbitrary fixed color k sphere $S_r^2 \subset \mathbb{R}^3$ with radius r contains a unit edge connecting vertices, both painted in color that differs from k.

• Lemma 3

 $\forall r > 0 \ \forall n \ge 2 \ \exists A, B \in \mathbb{R}^n, |AB| = r$, so that color of A differs from color of B.

Proof of theorem 3. Auxiliary Lemmas

• Lemma 2

 $\begin{array}{ll} \forall r>1/2 \ \forall \varepsilon>0 \ \exists r_0 < r, |r-r_0| < \varepsilon \text{, so that every circle} \\ S_{r_0} \text{ with radius } r_0 \text{ contains cycle of odd length with unit edges.} \end{array}$

Corollary

For arbitrary coloring, for all r > 1/2 and for arbitrary fixed color k sphere $S_r^2 \subset \mathbb{R}^3$ with radius r contains a unit edge connecting vertices, both painted in color that differs from k.

• Lemma 3

 $\forall r > 0 \ \forall n \ge 2 \ \exists A, B \in \mathbb{R}^n, |AB| = r$, so that color of A differs from color of B.

End of proof

• The values for r in theorem 3 were chosen so that $|PP_0| > 1/2$.

→ < E → < E →</p>

End of proof

• The values for r in theorem 3 were chosen so that $|PP_0| > 1/2$.

∃ → < ∃</p>

Thank You

Kupavskiy A.B. Raigorodskiy A.M. On the chromatic number of Euclidean spaces

э

э