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Introduction

Borsuk’s problem

o F(Q) =min{ f: Q=0 U...UQy,diamQ; < diam Q}
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Introduction

Borsuk’s problem
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f(n)=n+1 forn<3
f(n)>n+1 for n> 298

(1.2255... 4 o(1))V™ < f(n) < (1.224... + o(1))"
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Introduction

Definition of df

° Vo CR”

di(®) =inf{x>0: d=d;UdyU...Ud, diamd; < x}
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Introduction

Definition of df

° Vo CR”

di(®) =inf{x>0: d=d;UdyU...Ud, diamd; < x}

di = sup d{(P).
®, diam d=1
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Introduction

Results in R?

Q@ dl=d2=1
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Q0 i3=L
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Results in R?

Q d=d?=1
Q2=
(5] d}z%—H. Lenz, 1956
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Introduction

Results in R?

Qd=d=1
Q2=

(5] d}z%—H. Lenz, 1956
QO d? =} - H. Lenz, 1956

@ d? for many other cases — V. Filimonov, 2008
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Introduction

Some Results in R3

Q di=d=d}=1
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Introduction

Some Results in R3

o
2]
o
o
o
o
7]

a3 =di=di =1

d3>/(3+3)/6=0.888...
d3 =4/(3+V/3)/6 - D. Gale conjecture, 1953

d3 <0.9977 - A. Heppes, 1957
d3 <0.9887 - B. Griinbaum, 1957
d3 <0.98 - V. Makeev, L. Evdokimov, 1997

d3 < 1/(35++/73)/48 = 0.9524... — M. Lassak, 1982
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Introduction

main result

Theorem 1
The inequality holds d2 < 0.9425.
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Universal covering system

Definitions, main property

o U is a universal cover in R", if

Ve CR" diam®d =1, 3 0 € Eucl/(R"), O(U) 2 ¢
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Universal covering system

Definitions, main property

o U is a universal cover in R", if

Vo CR" diam® =1, 3 0 € Eucl/(R"), O(U) 2 ¢
e U is a universal covering system in R", if

Vo CR”, diamd =1, U ecl,
3 0 € Eucl(R"), O(U) 2 &

Kupavskiy A.B. Raigorodskiy A.M. On dividing sets into parts of smaller diameter



Universal covering system

Definitions, main property

o U is a universal cover in R", if

Vo CR" diam® =1, 3 0 € Eucl/(R"), O(U) 2 ¢
e U is a universal covering system in R", if
Vo CR”, diamd =1, U ecl,

3 0 € Eucl(R"), O(U) D &

@ YV U — universal covering system in R”

di < sup dg(U).
Ued
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Universal covering system

Examples of universal covers

@ Ball with radius r, r = 2n12 in R”, H. Jung, 1903
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Universal covering system

Examples of universal covers

@ Ball with radius r, r = 2n12 in R”, H. Jung, 1903

@ (Lassak, 1982) U = B;N B, in R",

Bi={X=(x1,...,%a) : X} 4...+x><r?},
By ={X=(xt,--.,x): (xa—r)+x5+...+x; <1}
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Proof scheme

Universal covering system

r = /3/8 — radius of Jung ball in R3, d € [0.5,r]
D=D(d)={X=(xy,z): x>+y?+22<d?}, S=0D
DIZ{X:(vaaz): (X—d)2+y2—|—22§1}.
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Proof scheme

Universal covering system

O =(a,0,¢),
Oel(d)=SNDin{X =(x,y,z): x<0}nN{X =
(x,y,z): y =0},
D2 = Do(0) = {X = (x,y,2) : (x—a) 42+ (z— )2 <1} -
ball with radius 1 and center in O

=
r—a,
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Proof scheme

Universal covering system
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Proof scheme

Universal covering system

° Universal covering system U :
U={U(d,0): de05,r], Oc L(d)}
U is a set family with continuum cardinality, where
U(d, O) =DND;ND:.
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Proof scheme

Universal covering system

° Universal covering system U :
U={U(d,0): de05,r], Oc L(d)}
U is a set family with continuum cardinality, where
U(d, O) =DND;ND:.

e Lemma 1 U/ forms a universal covering system in R3
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Proof scheme

Construction of partitioning

YU € U we construct a partitioning into 5 parts subject to variables
g,0 € (0,d):
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Proof scheme

Construction of partitioning

Pi=UN{X=(x,y,z): x>r—c¢},
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Proof scheme

Construction of partitioning

o PL=Un{X=(xy,2): x<r—e}in
{X=(xy,2z): z>=0}nN{X =(x,y,2): y <0},

2

Kupavskiy A.B. Raigorodskiy A.M. On dividing sets into parts of smaller diameter



Proof scheme

Construction of partitioning

o PL=Un{X=(xy,2): x<r—e}in
{X=(xy,2z): z>=0}nN{X =(x,y,2): y <0},

2

@ P, symmetrical P, with respect to
plane {X =(x,y,z): y=0}.
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Proof scheme

Construction of partitioning

e P3=Un{X=(x,y,2): x<r—e}n
{X:(X,y72): ZS—é}ﬁ{X:(X,)@Z)Z _)/SO};

2
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Proof scheme

Construction of partitioning

e P3=Un{X=(x,y,2): x<r—e}n
{X:(X,y72): ZS—é}ﬁ{X:(X,)@Z)Z _)/SO};

2

@ Ps symmetrical P3 with respect to
plane {X = (x,y,z): y =0}
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Proof scheme

Scetch of proof

° first case: d > 0.592
Lemma 2 Diameter of P, is attained on points from
0P, U 3°P;. Similarly for Ps.
Lemma 3 Diameter of P, is attained on points from
d°P;. Similarly for Ps.
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Proof scheme

Scetch of proof

° first case: d > 0.592
Lemma 2 Diameter of P, is attained on points from
0P, U 3°P;. Similarly for Ps.
Lemma 3 Diameter of P, is attained on points from
d°P;. Similarly for Ps.

@ second case d < 0.592 — is similar to Lassak’s construction
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Proof scheme

Thank You
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