# On dividing three-dimensional sets into five parts of smaller diameter

Kupavskiy A.B. Raigorodskiy A.M.

Department of Mechanics and Mathematics Moscow State University Moscow, Russia

August 12, 2008, Keszthely



- $f(\Omega) = \min\{ f : \Omega = \Omega_1 \cup \ldots \cup \Omega_f, \operatorname{diam} \Omega_i < \operatorname{diam} \Omega \}$
- $f(n) = \max_{\Omega, \ \Omega \subset \mathbb{R}^n} f(\Omega)$ , diam  $\Omega < \infty$
- f(n) = n + 1 K. Borsuk's conjecture, 1933
- f(n) = n + 1 for  $n \le 3$ f(n) > n + 1 for  $n \ge 29$
- $(1.2255...+o(1))^{\sqrt{n}} \le f(n) \le (1.224...+o(1))^n$

- $f(\Omega) = \min\{ f : \Omega = \Omega_1 \cup \ldots \cup \Omega_f, \operatorname{diam} \Omega_i < \operatorname{diam} \Omega \}$
- $f(n) = \max_{\Omega, \ \Omega \subset \mathbb{R}^n} f(\Omega)$ , diam  $\Omega < \infty$
- f(n) = n + 1 K. Borsuk's conjecture, 1933
- f(n) = n + 1 for n < 3
- $(1.2255...+o(1))^{\sqrt{n}} < f(n) < (1.224...+o(1))^n$

- $f(\Omega) = \min\{ f : \Omega = \Omega_1 \cup \ldots \cup \Omega_f, \operatorname{diam} \Omega_i < \operatorname{diam} \Omega \}$
- $f(n) = \max_{\Omega \in \mathbb{R}^n} f(\Omega)$ , diam  $\Omega < \infty$
- f(n) = n + 1 K. Borsuk's conjecture, 1933
- f(n) = n + 1 for  $n \le 3$ f(n) > n + 1 for  $n \ge 298$
- $(1.2255...+o(1))^{\sqrt{n}} \le f(n) \le (1.224...+o(1))^n$

- $f(\Omega) = \min\{ f : \Omega = \Omega_1 \cup \ldots \cup \Omega_f, \operatorname{diam} \Omega_i < \operatorname{diam} \Omega \}$
- $f(n) = \max_{\Omega \in \mathbb{R}^n} f(\Omega)$ , diam  $\Omega < \infty$
- f(n) = n + 1 K. Borsuk's conjecture, 1933
- f(n) = n + 1 for  $n \le 3$ f(n) > n + 1 for  $n \ge 298$
- $(1.2255...+o(1))^{\sqrt{n}} \le f(n) \le (1.224...+o(1))^n$

- $f(\Omega) = \min\{ f : \Omega = \Omega_1 \cup \ldots \cup \Omega_f, \operatorname{diam} \Omega_i < \operatorname{diam} \Omega \}$
- $f(n) = \max_{\Omega, \ \Omega \subset \mathbb{R}^n} f(\Omega)$ , diam  $\Omega < \infty$
- f(n) = n + 1 K. Borsuk's conjecture, 1933
- f(n) = n + 1 for  $n \le 3$ f(n) > n + 1 for  $n \ge 298$
- $(1.2255...+o(1))^{\sqrt{n}} \le f(n) \le (1.224...+o(1))^n$

## Definition of $d_k^n$

$$d_k^n(\Phi) = \inf\{x \geq 0: \ \Phi = \Phi_1 \cup \Phi_2 \cup \ldots \cup \Phi_k, \operatorname{diam} \Phi_i \leq x\}$$

$$d_k^n = \sup_{\Phi, \text{ diam } \Phi = 1} d_k^n(\Phi).$$

## Definition of $d_k^n$

•  $\forall \Phi \subset \mathbb{R}^n$ 

$$d_k^n(\Phi) = \inf\{x \geq 0: \ \Phi = \Phi_1 \cup \Phi_2 \cup \ldots \cup \Phi_k, \operatorname{diam} \Phi_i \leq x\}$$

•

$$d_k^n = \sup_{\Phi, \operatorname{diam} \Phi = 1} d_k^n(\Phi).$$

$$d_2^1 = d_2^2 = 1$$

2 
$$d_3^2 = \frac{\sqrt{3}}{2}$$

$$d_4^2 = \frac{1}{\sqrt{2}} - H. \text{ Lenz}, 1956$$

$$d_7^2 = \frac{1}{2} - \text{H. Lenz}, 1956$$

 $d_k^2$  for many other cases – V. Filimonov, 2008

$$d_2^1 = d_2^2 = 1$$

2 
$$d_3^2 = \frac{\sqrt{3}}{2}$$

$$d_4^2 = \frac{1}{\sqrt{2}} - H. \text{ Lenz}, 1956$$

$$d_7^2 = \frac{1}{2} - H.$$
 Lenz, 1956

 $d_k^2$  for many other cases – V. Filimonov, 2008

$$d_2^1 = d_2^2 = 1$$

2 
$$d_3^2 = \frac{\sqrt{3}}{2}$$

$$d_4^2 = \frac{1}{\sqrt{2}} - \text{H. Lenz}, 1956$$

$$d_7^2 = \frac{1}{2} - \text{H. Lenz}, 1956$$

 $d_k^2$  for many other cases – V. Filimonov, 2008

$$d_2^1 = d_2^2 = 1$$

2 
$$d_3^2 = \frac{\sqrt{3}}{2}$$

$$d_4^2 = \frac{1}{\sqrt{2}} - \text{H. Lenz}, 1956$$

$$d_7^2 = \frac{1}{2} - H.$$
 Lenz, 1956

 $d_k^2$  for many other cases – V. Filimonov, 2008

$$d_2^1 = d_2^2 = 1$$

2 
$$d_3^2 = \frac{\sqrt{3}}{2}$$

$$d_4^2 = \frac{1}{\sqrt{2}} - H. \text{ Lenz}, 1956$$

$$d_7^2 = \frac{1}{2} - H.$$
 Lenz, 1956

$$d_1^3 = d_2^3 = d_3^3 = 1$$

$$d_4^3 \ge \sqrt{(3+\sqrt{3})/6} = 0.888...$$

(a) 
$$d_4^3 = \sqrt{(3+\sqrt{3})/6}$$
 – D. Gale conjecture, 1953

- $d_4^3 \le 0.9977 A$ . Heppes, 1957
- $d_4^3 < 0.9887 B.$  Grünbaum, 1957
- 0  $d_4^3 \le 0.98 V$ . Makeev, L. Evdokimov, 1997
- $d_5^3 \le \sqrt{(35 + \sqrt{73})/48} = 0.9524... M. Lassak, 1982$



$$d_1^3 = d_2^3 = d_3^3 = 1$$

$$d_4^3 \ge \sqrt{(3+\sqrt{3})/6} = 0.888...$$

- (a)  $d_4^3 = \sqrt{(3+\sqrt{3})/6}$  D. Gale conjecture, 1953
- $d_4^3 \le 0.9977 A$ . Heppes, 1957
- **5**  $d_4^3 \le 0.9887$  B. Grünbaum, 1957
- $d_4^3$  ≤ 0.98 V. Makeev, L. Evdokimov, 1997
- $d_5^3 \le \sqrt{(35 + \sqrt{73})/48} = 0.9524... M. Lassak, 1982$



$$d_1^3 = d_2^3 = d_3^3 = 1$$

$$d_4^3 \ge \sqrt{(3+\sqrt{3})/6} = 0.888...$$

**a** 
$$d_4^3 = \sqrt{(3+\sqrt{3})/6}$$
 – D. Gale conjecture, 1953

- $d_4^3 \leq 0.9977 A$ . Heppes, 1957
- ⑤  $d_4^3 \le 0.9887$  B. Grünbaum, 1957
- $d_4^3$  ≤ 0.98 − V. Makeev, L. Evdokimov, 1997
- $d_5^3 \le \sqrt{(35 + \sqrt{73})/48} = 0.9524... M. Lassak, 1982$



$$d_1^3 = d_2^3 = d_3^3 = 1$$

$$d_4^3 \ge \sqrt{(3+\sqrt{3})/6} = 0.888...$$

**3** 
$$d_4^3 = \sqrt{(3+\sqrt{3})/6}$$
 – D. Gale conjecture, 1953

$$d_4^3 \le 0.9977 - A$$
. Heppes, 1957

- $d_A^3 \leq 0.9887 B.$  Grünbaum, 1957
- $d_4^3 < 0.98 V$ . Makeev, L. Evdokimov, 1997
- $d_5^3 \le \sqrt{(35 + \sqrt{73})/48} = 0.9524... M.$  Lassak, 1982



$$d_1^3 = d_2^3 = d_3^3 = 1$$

$$d_4^3 \ge \sqrt{(3+\sqrt{3})/6} = 0.888...$$

**3** 
$$d_4^3 = \sqrt{(3+\sqrt{3})/6}$$
 – D. Gale conjecture, 1953

$$d_4^3 \le 0.9977$$
 – A. Heppes, 1957

**5** 
$$d_4^3 \le 0.9887$$
 – B. Grünbaum, 1957

$$d_4^3$$
 ≤ 0.98 − V. Makeev, L. Evdokimov, 1997

$$d_5^3 \le \sqrt{(35 + \sqrt{73})/48} = 0.9524... - M. Lassak, 1982$$



$$d_1^3 = d_2^3 = d_3^3 = 1$$

$$d_4^3 \ge \sqrt{(3+\sqrt{3})/6} = 0.888...$$

**3** 
$$d_4^3 = \sqrt{(3+\sqrt{3})/6}$$
 – D. Gale conjecture, 1953

- $d_4^3 \le 0.9977$  A. Heppes, 1957
- **5**  $d_4^3 \le 0.9887$  B. Grünbaum, 1957
- **o**  $d_4^3$  ≤ 0.98 − V. Makeev, L. Evdokimov, 1997
- $d_5^3 \le \sqrt{(35+\sqrt{73})/48} = 0.9524... M.$  Lassak, 1982



$$d_1^3 = d_2^3 = d_3^3 = 1$$

$$d_4^3 \ge \sqrt{(3+\sqrt{3})/6} = 0.888...$$

**3** 
$$d_4^3 = \sqrt{(3+\sqrt{3})/6}$$
 – D. Gale conjecture, 1953

$$d_4^3 \le 0.9977$$
 – A. Heppes, 1957

**5** 
$$d_4^3 \le 0.9887$$
 – B. Grünbaum, 1957

**o** 
$$d_4^3$$
 ≤ 0.98 − V. Makeev, L. Evdokimov, 1997

$$d_5^3 \le \sqrt{(35+\sqrt{73})/48} = 0.9524... - M. Lassak, 1982$$



#### main result

#### Theorem 1

The inequality holds  $d_5^3 \leq 0.9425$ .

#### Definitions, main property

• U is a *universal cover* in  $\mathbb{R}^n$ , if

$$\forall \ \Phi \subset \mathbb{R}^n, \ \mathsf{diam} \ \Phi = 1, \ \exists \ O \in \mathit{Eucl}(\mathbb{R}^n), \ \mathit{O}(U) \supseteq \Phi$$

ullet  $\mathcal U$  is a universal covering system in  $\mathbb R^n$ , if

$$\forall \ \Phi \subset \mathbb{R}^n, \ \operatorname{diam} \Phi = 1, \ \exists \ U \in \mathcal{U},$$

$$\exists \ O \in \operatorname{Eucl}(\mathbb{R}^n), \ O(U) \supseteq \Phi$$

•  $\forall \mathcal{U}$  - universal covering system in  $\mathbb{R}^n$ 

$$d_k^n \leq \sup_{U \in \mathcal{U}} d_k^n(U)$$



#### Definitions, main property

• U is a universal cover in  $\mathbb{R}^n$ , if

$$\forall \ \Phi \subset \mathbb{R}^n, \ \mathsf{diam} \ \Phi = 1, \ \exists \ O \in \mathit{Eucl}(\mathbb{R}^n), \ \mathit{O}(U) \supseteq \Phi$$

ullet  $\mathcal U$  is a universal covering system in  $\mathbb R^n$ , if

$$\forall \ \Phi \subset \mathbb{R}^n, \ \mathsf{diam} \ \Phi = 1, \ \exists \ U \in \mathcal{U},$$
 
$$\exists \ O \in \mathsf{Eucl}(\mathbb{R}^n), \ O(U) \supseteq \Phi$$

•  $\forall \mathcal{U}$  – universal covering system in  $\mathbb{R}^n$ 

$$d_k^n \leq \sup_{U \in \mathcal{U}} d_k^n(U).$$



#### Definitions, main property

• U is a universal cover in  $\mathbb{R}^n$ , if

$$\forall \ \Phi \subset \mathbb{R}^n, \ \mathsf{diam} \ \Phi = 1, \ \exists \ O \in \mathit{Eucl}(\mathbb{R}^n), \ \mathit{O}(U) \supseteq \Phi$$

ullet  $\mathcal U$  is a universal covering system in  $\mathbb R^n$ , if

$$\forall \ \Phi \subset \mathbb{R}^n, \ \mathsf{diam} \ \Phi = 1, \ \exists \ U \in \mathcal{U},$$
  $\exists \ O \in \mathsf{Eucl}(\mathbb{R}^n), \ O(U) \supseteq \Phi$ 

•  $\forall \mathcal{U}$  – universal covering system in  $\mathbb{R}^n$ 

$$d_k^n \leq \sup_{U \in \mathcal{U}} d_k^n(U).$$



#### Examples of universal covers

- **1** Ball with radius r,  $r = \sqrt{\frac{n}{2n+2}}$  in  $\mathbb{R}^n$ , H. Jung, 1903
- ② (Lassak, 1982)  $U = B_1 \cap B_2$  in  $\mathbb{R}^n$ ,

$$B_1 = \{X = (x_1, \dots, x_n) : x_1^2 + \dots + x_n^2 \le r^2\},$$
  

$$B_2 = \{X = (x_1, \dots, x_n) : (x_1 - r)^2 + x_2^2 + \dots + x_n^2 \le 1\}.$$

#### Examples of universal covers

- **1** Ball with radius r,  $r = \sqrt{\frac{n}{2n+2}}$  in  $\mathbb{R}^n$ , H. Jung, 1903
- ② (Lassak, 1982)  $U = B_1 \cap B_2$  in  $\mathbb{R}^n$ ,

$$B_1 = \{X = (x_1, \dots, x_n) : x_1^2 + \dots + x_n^2 \le r^2\},$$
  

$$B_2 = \{X = (x_1, \dots, x_n) : (x_1 - r)^2 + x_2^2 + \dots + x_n^2 \le 1\}.$$

$$r = \sqrt{3/8}$$
 - radius of Jung ball in  $\mathbb{R}^3$ ,  $d \in [0.5, r]$   $D = D(d) = \{X = (x, y, z) : x^2 + y^2 + z^2 \le d^2\}$ ,  $S = \partial D$   $D_1 = \{X = (x, y, z) : (x - d)^2 + y^2 + z^2 \le 1\}$ .



$$\mathcal{O} = (a,0,c), \\ \mathcal{O} \in L(d) = S \cap D_1 \cap \{X = (x,y,z) : x \leq 0\} \cap \{X = (x,y,z) : y = 0\}, \\ D_2 = D_2(\mathcal{O}) = \{X = (x,y,z) : (x-a)^2 + y^2 + (z-c)^2 \leq 1\} - \\ \text{ball with radius 1 and center in } \mathcal{O}$$





Universal covering system  $\mathcal{U}$ :  $U = \{U(d, \mathcal{O}): d \in [0.5, r], \mathcal{O} \in L(d)\}$  $\mathcal{U}$  is a set family with continuum cardinality, where  $U(d, \mathcal{O}) = D \cap D_1 \cap D_2$ .



Universal covering system  $\mathcal{U}$ :  $\mathcal{U} = \{ U(d, \mathcal{O}) : d \in [0.5, r], \mathcal{O} \in L(d) \}$  $\mathcal{U}$  is a set family with continuum cardinality, where  $U(d,\mathcal{O})=D\cap D_1\cap D_2.$ 



Lemma 1  $\mathcal{U}$  forms a universal covering system in  $\mathbb{R}^3$ 

 $\forall U \in \mathcal{U}$  we construct a partitioning into 5 parts subject to variables  $\varepsilon, \delta \in (0, d)$ :

$$P_1 = P_1(U, \varepsilon, \delta), \ldots, P_5 = P_5(U, \varepsilon, \delta)$$



$$P_1=U\cap\{X=(x,y,z):\ x\geq r-\varepsilon\},$$



• 
$$P_2 = U \cap \{X = (x, y, z) : x \le r - \varepsilon\} \cap \{X = (x, y, z) : z \ge -\delta\} \cap \{X = (x, y, z) : y \le 0\},$$



•  $P_4$  symmetrical  $P_2$  with respect to plane  $\{X = (x, y, z) : y = 0\}.$ 



• 
$$P_2 = U \cap \{X = (x, y, z) : x \le r - \varepsilon\} \cap \{X = (x, y, z) : z \ge -\delta\} \cap \{X = (x, y, z) : y \le 0\},$$



•  $P_4$  symmetrical  $P_2$  with respect to plane  $\{X = (x, y, z) : y = 0\}$ .



• 
$$P_3 = U \cap \{X = (x, y, z) : x \le r - \varepsilon\} \cap \{X = (x, y, z) : z \le -\delta\} \cap \{X = (x, y, z) : y \le 0\};$$



•  $P_5$  symmetrical  $P_3$  with respect to plane  $\{X = (x, y, z) : y = 0\}.$ 



•  $P_3 = U \cap \{X = (x, y, z) : x \le r - \varepsilon\} \cap \{X = (x, y, z) : z \le -\delta\} \cap \{X = (x, y, z) : y \le 0\};$ 



•  $P_5$  symmetrical  $P_3$  with respect to plane  $\{X = (x, y, z) : y = 0\}.$ 



#### Scetch of proof

• first case:  $d \ge 0.592$ 

**Lemma 2** Diameter of  $P_2$  is attained on points from  $\partial^1 P_2 \cup \partial^0 P_2$ . Similarly for  $P_3$ .

**Lemma 3** Diameter of  $P_2$  is attained on points from  $\partial^0 P_2$ . Similarly for  $P_3$ .





#### Scetch of proof

first case: d > 0.592

**Lemma 2** Diameter of  $P_2$  is attained on points from  $\partial^1 P_2 \cup \partial^0 P_2$ . Similarly for  $P_3$ .

**Lemma 3** Diameter of  $P_2$  is attained on points from  $\partial^0 P_2$ . Similarly for  $P_3$ .



 $d \leq 0.592$  – is similar to Lassak's construction second case





# Thank You