On dividing three-dimensional sets into five parts of smaller diameter

Kupavskiy A.B. Raigorodskiy A.M.

Department of Mechanics and Mathematics Moscow State University Moscow, Russia

August 12, 2008, Keszthely

Borsuk's problem

- $f(\Omega)=\min \left\{f: \Omega=\Omega_{1} \cup \ldots \cup \Omega_{f}, \operatorname{diam} \Omega_{i}<\operatorname{diam} \Omega\right\}$

- $f(n)=n+1 \quad$ K. Borsuk's conjecture, 1933
- $f(n)=n+1$ for $n \leq 3$ $f(n)>n+1$ for $n \geq 298$
- $(1.2255 \ldots+o(1))^{\sqrt{n}} \leq f(n) \leq(1.224 \ldots+o(1))^{n}$

Borsuk's problem

- $f(\Omega)=\min \left\{f: \Omega=\Omega_{1} \cup \ldots \cup \Omega_{f}, \operatorname{diam} \Omega_{i}<\operatorname{diam} \Omega\right\}$
- $f(n)=\max _{\Omega, \Omega \subset \mathbb{R}^{n}} f(\Omega), \operatorname{diam} \Omega<\infty$
- $f(n)=n+1 \quad$ K. Borsuk's conjecture, 1933
- $f(n)=n+1$ for $n \leq 3$
$f(n)>n+1$ for $n \geq 298$
- $(1.2255 \ldots+o(1))^{\sqrt{n}} \leq f(n) \leq(1.224 \ldots+o(1))^{n}$

Borsuk's problem

- $f(\Omega)=\min \left\{f: \Omega=\Omega_{1} \cup \ldots \cup \Omega_{f}, \operatorname{diam} \Omega_{i}<\operatorname{diam} \Omega\right\}$
- $f(n)=\max _{\Omega, \Omega \subset \mathbb{R}^{n}} f(\Omega), \quad \operatorname{diam} \Omega<\infty$
- $f(n)=n+1 \quad$ K. Borsuk's conjecture, 1933
- $\begin{aligned} f(n) & =n+1 & \text { for } n \leq 3 \\ f(n) & >n+1 & \text { for } n \geq 298\end{aligned}$
- $(1.2255 \ldots+o(1))^{\sqrt{n}} \leq f(n) \leq(1.224 \ldots+o(1))^{n}$

Borsuk's problem

- $f(\Omega)=\min \left\{f: \Omega=\Omega_{1} \cup \ldots \cup \Omega_{f}, \operatorname{diam} \Omega_{i}<\operatorname{diam} \Omega\right\}$
- $f(n)=\max _{\Omega, \Omega \subset \mathbb{R}^{n}} f(\Omega), \quad \operatorname{diam} \Omega<\infty$
- $f(n)=n+1 \quad$ K. Borsuk's conjecture, 1933
- $f(n)=n+1$ for $n \leq 3$
$f(n)>n+1 \quad$ for $n \geq 298$

Borsuk's problem

- $f(\Omega)=\min \left\{f: \Omega=\Omega_{1} \cup \ldots \cup \Omega_{f}, \operatorname{diam} \Omega_{i}<\operatorname{diam} \Omega\right\}$
- $f(n)=\max _{\Omega, \Omega \subset \mathbb{R}^{n}} f(\Omega), \operatorname{diam} \Omega<\infty$
- $f(n)=n+1 \quad$ K. Borsuk's conjecture, 1933
- $f(n)=n+1$ for $n \leq 3$ $f(n)>n+1$ for $n \geq 298$
- $(1.2255 \ldots+o(1))^{\sqrt{n}} \leq f(n) \leq(1.224 \ldots+o(1))^{n}$

Definition of d_{k}^{n}

- $\quad \forall \Phi \subset \mathbb{R}^{n}$

$$
d_{k}^{n}(\Phi)=\inf \left\{x \geq 0: \Phi=\Phi_{1} \cup \Phi_{2} \cup \ldots \cup \Phi_{k}, \operatorname{diam} \Phi_{i} \leq x\right\}
$$

Definition of d_{k}^{n}

$$
\forall \Phi \subset \mathbb{R}^{n}
$$

$$
d_{k}^{n}(\Phi)=\inf \left\{x \geq 0: \Phi=\Phi_{1} \cup \Phi_{2} \cup \ldots \cup \Phi_{k}, \operatorname{diam} \Phi_{i} \leq x\right\}
$$

$$
d_{k}^{n}=\sup _{\Phi, \operatorname{diam} \Phi=1} d_{k}^{n}(\Phi)
$$

Results in \mathbb{R}^{2}

(1) $d_{2}^{1}=d_{2}^{2}=1$
(3) $d_{3}^{2}=\frac{\sqrt{3}}{2}$

- $d_{4}^{2}=\frac{1}{\sqrt{2}}-H$. Lenz, 1956
- $d_{7}^{2}=\frac{1}{2}-$ H. Lenz, 1956
- d_{k}^{2} for many other cases - V. Filimonov, 2008

Results in \mathbb{R}^{2}

(1) $d_{2}^{1}=d_{2}^{2}=1$
(c) $d_{3}^{2}=\frac{\sqrt{3}}{2}$

- $d_{4}^{2}=\frac{1}{\sqrt{2}}-$ H. Lenz, 1956
- $d_{7}^{2}=\frac{1}{2}-$ H. Lenz, 1956
- d_{k}^{2} for many other cases - V. Filimonov, 2008

Results in \mathbb{R}^{2}

(1) $d_{2}^{1}=d_{2}^{2}=1$
(c) $d_{3}^{2}=\frac{\sqrt{3}}{2}$

- $d_{4}^{2}=\frac{1}{\sqrt{2}}-$ H. Lenz, 1956
- $d_{7}^{2}=\frac{1}{2}-$ H. Lenz, 1956
- d_{k}^{2} for many other cases - V. Filimonov, 2008

Results in \mathbb{R}^{2}

(1) $d_{2}^{1}=d_{2}^{2}=1$
(c) $d_{3}^{2}=\frac{\sqrt{3}}{2}$
(-) $d_{4}^{2}=\frac{1}{\sqrt{2}}-$ H. Lenz, 1956
(0) $d_{7}^{2}=\frac{1}{2}-$ H. Lenz, 1956
© d_{k}^{2} for many other cases - V. Filimonov, 2008

Results in \mathbb{R}^{2}

(1) $d_{2}^{1}=d_{2}^{2}=1$
(2) $d_{3}^{2}=\frac{\sqrt{3}}{2}$
(3) $d_{4}^{2}=\frac{1}{\sqrt{2}}-H$. Lenz, 1956
($d_{7}^{2}=\frac{1}{2}-H$. Lenz, 1956
(3) d_{k}^{2} for many other cases - V. Filimonov, 2008

Some Results in \mathbb{R}^{3}

(1) $d_{1}^{3}=d_{2}^{3}=d_{3}^{3}=1$

$d_{4}^{3} \leq 0.9977-A$. Heppes, 1957

- B. Grünbaum, 1957
© $d_{4}^{3} \leq 0.98$ - V. Makeev, L. Evdokimov, 1997
- $d_{5}^{3} \leq \sqrt{(35+\sqrt{73}) / 48}=0.9524 \ldots-$ M. Lassak, 1982

Kupavskiy A.B. Raigorodskiy A.M.
 On dividing sets into parts of smaller diameter

Some Results in \mathbb{R}^{3}

(1) $d_{1}^{3}=d_{2}^{3}=d_{3}^{3}=1$
(c) $d_{4}^{3} \geq \sqrt{(3+\sqrt{3}) / 6}=0.888 \ldots$

- $d_{4}^{3}=\sqrt{(3+\sqrt{3}) / 6-D . \text { Gale conjecture, } 1953}$
- $d_{4}^{3} \leq 0.9977$ - A. Heppes, 1957
- $d_{4}^{3} \leq 0.9887$ - B. Grünbaum, 1957
- $d_{4}^{3} \leq 0.98-$ V. Makeev, L. Evdokimov, 1997
- $d_{5}^{3} \leq \sqrt{(35+\sqrt{73}) / 48}=0.9524 \ldots-$ M. Lassak, 1982

Some Results in \mathbb{R}^{3}

(1) $d_{1}^{3}=d_{2}^{3}=d_{3}^{3}=1$
(2) $d_{4}^{3} \geq \sqrt{(3+\sqrt{3}) / 6}=0.888 \ldots$

- $d_{4}^{3}=\sqrt{(3+\sqrt{3}) / 6}$ - D. Gale conjecture, 1953
- $d_{4}^{3} \leq 0.9977-A$. Heppes, 1957
- $d_{4}^{3} \leq 0.9887$ - B. Grünbaum, 1957
- $d_{4}^{3} \leq 0.98-$ V. Makeev, L. Evdokimov, 1997
- $d_{5}^{3} \leq \sqrt{(35+\sqrt{73}) / 48}=0.9524 \ldots-$ M. Lassak, 1982

Some Results in \mathbb{R}^{3}

(1) $d_{1}^{3}=d_{2}^{3}=d_{3}^{3}=1$
(2) $d_{4}^{3} \geq \sqrt{(3+\sqrt{3}) / 6}=0.888 \ldots$
(3) $d_{4}^{3}=\sqrt{(3+\sqrt{3}) / 6}$ - D. Gale conjecture, 1953
(c) $d_{4}^{3} \leq 0.9977-\mathrm{A}$. Heppes, 1957
© $d_{4}^{3} \leq 0.9887-B$. Grünbaum, 1957
(0) $d_{4}^{3} \leq 0.98$ - V. Makeev, L. Evdokimov, 1997
a $d_{5}^{3} \leq \sqrt{(35+\sqrt{73}) / 18}=0.9524 \ldots-$ M. Lassak, 1982

Some Results in \mathbb{R}^{3}

(1) $d_{1}^{3}=d_{2}^{3}=d_{3}^{3}=1$
(2) $d_{4}^{3} \geq \sqrt{(3+\sqrt{3}) / 6}=0.888 \ldots$
(3) $d_{4}^{3}=\sqrt{(3+\sqrt{3}) / 6}$ - D. Gale conjecture, 1953
(1) $d_{4}^{3} \leq 0.9977-\mathrm{A}$. Heppes, 1957
(3) $d_{4}^{3} \leq 0.9887$ - B. Grünbaum, 1957
(0) $d_{4}^{3} \leq 0.98$ - V. Makeev, L. Evdokimov, 1997
(0) $d_{5}^{3} \leq \sqrt{(35+\sqrt{73}) / 48}=0.9524 \ldots-M$. Lassak, 1982

Some Results in \mathbb{R}^{3}

(1) $d_{1}^{3}=d_{2}^{3}=d_{3}^{3}=1$
(2) $d_{4}^{3} \geq \sqrt{(3+\sqrt{3}) / 6}=0.888 \ldots$
(3) $d_{4}^{3}=\sqrt{(3+\sqrt{3}) / 6}$ - D. Gale conjecture, 1953
(1) $d_{4}^{3} \leq 0.9977-\mathrm{A}$. Heppes, 1957
(3) $d_{4}^{3} \leq 0.9887$ - B. Grünbaum, 1957
(6) $d_{4}^{3} \leq 0.98-\mathrm{V}$. Makeev, L. Evdokimov, 1997
(-) $d_{5}^{3} \leq \sqrt{(35+\sqrt{73}) / 48}=0.9524 \ldots$ - M. Lassak, 1982

Some Results in \mathbb{R}^{3}

(1) $d_{1}^{3}=d_{2}^{3}=d_{3}^{3}=1$
(2) $d_{4}^{3} \geq \sqrt{(3+\sqrt{3}) / 6}=0.888 \ldots$
(3) $d_{4}^{3}=\sqrt{(3+\sqrt{3}) / 6}$ - D. Gale conjecture, 1953
(1) $d_{4}^{3} \leq 0.9977-\mathrm{A}$. Heppes, 1957
(5) $d_{4}^{3} \leq 0.9887$ - B. Grünbaum, 1957
(6) $d_{4}^{3} \leq 0.98$ - V. Makeev, L. Evdokimov, 1997
($d_{5}^{3} \leq \sqrt{(35+\sqrt{73}) / 48}=0.9524 \ldots-$ M. Lassak, 1982

main result

Theorem 1
The inequality holds $d_{5}^{3} \leq 0.9425$.

Definitions, main property

- U is a universal cover in \mathbb{R}^{n}, if
$\forall \Phi \subset \mathbb{R}^{n}, \operatorname{diam} \Phi=1, \exists O \in \operatorname{Eucl}\left(\mathbb{R}^{n}\right), O(U) \supseteq \Phi$
- \mathcal{U} is a universal covering system in \mathbb{R}^{n}, if
$\forall \Phi \subset \mathbb{R}^{n}, \operatorname{diam} \Phi=1, \exists U \in \mathcal{U}$,

- $\forall \mathcal{U}$ - universal covering system in \mathbb{R}^{n}

Definitions, main property

- U is a universal cover in \mathbb{R}^{n}, if

$$
\forall \Phi \subset \mathbb{R}^{n}, \operatorname{diam} \Phi=1, \exists O \in \operatorname{Eucl}\left(\mathbb{R}^{n}\right), O(U) \supseteq \Phi
$$

- \mathcal{U} is a universal covering system in \mathbb{R}^{n}, if

$$
\begin{gathered}
\forall \Phi \subset \mathbb{R}^{n}, \operatorname{diam} \Phi=1, \exists U \in \mathcal{U} \\
\exists O \in \operatorname{Eucl}\left(\mathbb{R}^{n}\right), O(U) \supseteq \Phi
\end{gathered}
$$

- $\forall \mathcal{U}$ - universal covering system in \mathbb{R}^{n}

Definitions, main property

- U is a universal cover in \mathbb{R}^{n}, if

$$
\forall \Phi \subset \mathbb{R}^{n}, \operatorname{diam} \Phi=1, \exists O \in \operatorname{Eucl}\left(\mathbb{R}^{n}\right), O(U) \supseteq \Phi
$$

- \mathcal{U} is a universal covering system in \mathbb{R}^{n}, if

$$
\begin{gathered}
\forall \Phi \subset \mathbb{R}^{n}, \operatorname{diam} \Phi=1, \exists U \in \mathcal{U} \\
\exists O \in \operatorname{Eucl}\left(\mathbb{R}^{n}\right), O(U) \supseteq \Phi
\end{gathered}
$$

- $\forall \mathcal{U}$ - universal covering system in \mathbb{R}^{n}

$$
d_{k}^{n} \leq \sup _{U \in \mathcal{U}} d_{k}^{n}(U)
$$

Examples of universal covers

(1) Ball with radius $r, r=\sqrt{\frac{n}{2 n+2}}$ in \mathbb{R}^{n}, H. Jung, 1903 (3) (Lassak, 1982) $U=B_{1} \cap B_{2}$ in \mathbb{R}^{n},

Examples of universal covers

(1) Ball with radius $r, r=\sqrt{\frac{n}{2 n+2}}$ in \mathbb{R}^{n}, H. Jung, 1903
(2) (Lassak, 1982) $U=B_{1} \cap B_{2}$ in \mathbb{R}^{n},

$$
\begin{gathered}
B_{1}=\left\{X=\left(x_{1}, \ldots, x_{n}\right): x_{1}^{2}+\ldots+x_{n}^{2} \leq r^{2}\right\} \\
B_{2}=\left\{X=\left(x_{1}, \ldots, x_{n}\right):\left(x_{1}-r\right)^{2}+x_{2}^{2}+\ldots+x_{n}^{2} \leq 1\right\} .
\end{gathered}
$$

Universal covering system

$$
\begin{aligned}
& r=\sqrt{3 / 8}-\text { radius of Jung ball in } \mathbb{R}^{3}, \quad d \in[0.5, r] \\
& D=D(d)=\left\{X=(x, y, z): x^{2}+y^{2}+z^{2} \leq d^{2}\right\}, S=\partial D \\
& D_{1}=\left\{X=(x, y, z):(x-d)^{2}+y^{2}+z^{2} \leq 1\right\} .
\end{aligned}
$$

Universal covering system

$$
\begin{aligned}
& \mathcal{O}=(a, 0, c), \\
& \mathcal{O} \in L(d)=S \cap D_{1} \cap\{X=(x, y, z): x \leq 0\} \cap\{X= \\
& (x, y, z): y=0\}, \\
& D_{2}=D_{2}(\mathcal{O})=\left\{X=(x, y, z):(x-a)^{2}+y^{2}+(z-c)^{2} \leq 1\right\}- \\
& \text { ball with radius } 1 \text { and center in } \mathcal{O}
\end{aligned}
$$

Universal covering system

Universal covering system

- Universal covering system \mathcal{U} :

$$
\mathcal{U}=\{U(d, \mathcal{O}): d \in[0.5, r], \mathcal{O} \in L(d)\}
$$

\mathcal{U} is a set family with continuum cardinality, where

$$
U(d, \mathcal{O})=D \cap D_{1} \cap D_{2}
$$

Universal covering system

- Universal covering system \mathcal{U} :

$$
\mathcal{U}=\{U(d, \mathcal{O}): d \in[0.5, r], \mathcal{O} \in L(d)\}
$$

\mathcal{U} is a set family with continuum cardinality, where

$$
U(d, \mathcal{O})=D \cap D_{1} \cap D_{2}
$$

- Lemma $1 \mathcal{U}$ forms a universal covering system in \mathbb{R}^{3}

Kupavskiy A.B. Raigorodskiy A.M. On dividing sets into parts of smaller diameter

Construction of partitioning

$\forall U \in \mathcal{U}$ we construct a partitioning into 5 parts subject to variables $\varepsilon, \delta \in(0, d)$:

$$
P_{1}=P_{1}(U, \varepsilon, \delta), \ldots, P_{5}=P_{5}(U, \varepsilon, \delta)
$$

Construction of partitioning

$$
P_{1}=U \cap\{X=(x, y, z): x \geq r-\varepsilon\},
$$

Construction of partitioning

- $P_{2}=U \cap\{X=(x, y, z): x \leq r-\varepsilon\} \cap$

$$
\{X=(x, y, z): z \geq-\delta\} \cap\{X=(x, y, z): y \leq 0\}
$$

- P_{4} symmetrical P_{2} with respect to nlane $\{X=(x, y, z): y=0\}$

Construction of partitioning

- $P_{2}=U \cap\{X=(x, y, z): x \leq r-\varepsilon\} \cap$

$$
\{X=(x, y, z): z \geq-\delta\} \cap\{\bar{X}=(x, y, z): y \leq 0\}
$$

- P_{4} symmetrical P_{2} with respect to plane $\{X=(x, y, z): y=0\}$.

Construction of partitioning

- $P_{3}=U \cap\{X=(x, y, z): x \leq r-\varepsilon\} \cap$

$$
\{X=(x, y, z): z \leq-\delta\} \cap\{X=(x, y, z): y \leq 0\}
$$

- P_{5} symmetrical P_{3} with respect to plane $\{X=(x, y, z): y=0\}$

Construction of partitioning

- $P_{3}=U \cap\{X=(x, y, z): x \leq r-\varepsilon\} \cap$

$$
\{X=(x, y, z): z \leq-\delta\} \cap\{\bar{X}=(x, y, z): y \leq 0\}
$$

- P_{5} symmetrical P_{3} with respect to plane $\{X=(x, y, z): y=0\}$.

Scetch of proof

- first case: $d \geq 0.592$

Lemma 2 Diameter of P_{2} is attained on points from $\partial^{1} P_{2} \cup \partial^{0} P_{2}$. Similarly for P_{3}.
Lemma 3 Diameter of P_{2} is attained on points from $\partial^{0} P_{2}$. Similarly for P_{3}.

Scetch of proof

- first case: $d \geq 0.592$

Lemma 2 Diameter of P_{2} is attained on points from $\partial^{1} P_{2} \cup \partial^{0} P_{2}$. Similarly for P_{3}.
Lemma 3 Diameter of P_{2} is attained on points from $\partial^{0} P_{2}$. Similarly for P_{3}.

- second case $d \leq 0.592$ - is similar to Lassak's construction

Introduction

Thank You

Kupavskiy A.B. Raigorodskiy A.M. On dividing sets into parts of smaller diameter

